Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • College of Agriculture and Life Sciences (CALS)
    • Sustainable Agriculture and Natural Resource Management (SANREM) Knowledgebase
    • View Item
    •   VTechWorks Home
    • College of Agriculture and Life Sciences (CALS)
    • Sustainable Agriculture and Natural Resource Management (SANREM) Knowledgebase
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Wheat yield and tillage-straw management system × year interaction explained by climatic co-variables for an irrigated bed planting system in northwestern Mexico

    Thumbnail
    Date
    2011
    Author
    Verhulst, N.
    Sayre, Ken D.
    Vargas, M.
    Crossa, J.
    Deckers, Jozef
    Raes, D.
    Govaerts, Bram
    Metadata
    Show full item record
    Abstract
    Wheat is an important food and income source and estimated demand for wheat in the developing world is projected to increase substantially. The objectives of this study were to gain insight into (i) the effect of tillage-straw system on yield and yield components (number of grains per meter squared and thousand kernel weight), (ii) the relation between climatic conditions and yield and yield components, (iii) the explanation of tillage-straw system × year interaction for yield and yield components by climatic co-variables. Wheat grain yield and yield components were measured in a long-term trial established in 1992 under irrigated, arid conditions in northwestern Mexico. Five tillage-straw management systems (conventionally tilled raised beds [CTB] with straw incorporated and permanent raised beds [PB] with straw burned, removed, partly retained or fully retained) were compared for a wheat-maize rotation. Daily climatic data were averaged over six periods corresponding approximately to advancing wheat growth stages. The PB-straw retained and PB-straw removed had the highest yields (average yield of 7.31 and 7.24 t ha-1, respectively) and grains per m2. The PB-straw burned had the lowest yield (average yield of 6.65 t ha-1) and grains per m2, but the highest thousand kernel weight. Maximum temperature was positively correlated to final grain yield during tillering and head differentiation, but was negatively correlated to thousand kernel weight during grain-filling. For the tillage-straw system year interaction, three groups of management systems were distinguished for yield and grains per m2: PB-straw burned, CTB-straw incorporated and PB where straw is not burned. The CTB-straw incorporated had a positive interaction with year in favorable years with high radiation and evapotranspiration. The PB-straw burned was relatively more affected by excess water conditions and showed positive interactions in years with high relative humidity. The PB-straw retained was the most stable in different climatic conditions, indicating that this management system could contribute to maintaining wheat yield in a changing climate scenario. (Cab Abstracts)
    URI
    http://hdl.handle.net/10919/69909
    Collections
    • Sustainable Agriculture and Natural Resource Management (SANREM) Knowledgebase [3994]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us