Show simple item record

dc.contributor.authorCreekmore, Amy L.en_US
dc.contributor.authorSilkworth, William T.en_US
dc.contributor.authorCimini, Danielaen_US
dc.contributor.authorJensen, Roderick V.en_US
dc.contributor.authorRoberts, Paul C.en_US
dc.contributor.authorSchmelz, Eva M.en_US
dc.date.accessioned2018-11-08T15:08:06Z
dc.date.available2018-11-08T15:08:06Z
dc.date.issued2011-03-03en_US
dc.identifier.othere17676en_US
dc.identifier.urihttp://hdl.handle.net/10919/85798
dc.description.abstractBackground Ovarian cancer is the fifth leading cause of cancer deaths among women. Early stage disease often remains undetected due the lack of symptoms and reliable biomarkers. The identification of early genetic changes could provide insights into novel signaling pathways that may be exploited for early detection and treatment. Methodology/Principal Findings Mouse ovarian surface epithelial (MOSE) cells were used to identify stage-dependent changes in gene expression levels and signal transduction pathways by mouse whole genome microarray analyses and gene ontology. These cells have undergone spontaneous transformation in cell culture and transitioned from non-tumorigenic to intermediate and aggressive, malignant phenotypes. Significantly changed genes were overrepresented in a number of pathways, most notably the cytoskeleton functional category. Concurrent with gene expression changes, the cytoskeletal architecture became progressively disorganized, resulting in aberrant expression or subcellular distribution of key cytoskeletal regulatory proteins (focal adhesion kinase, α-actinin, and vinculin). The cytoskeletal disorganization was accompanied by altered patterns of serine and tyrosine phosphorylation as well as changed expression and subcellular localization of integral signaling intermediates APC and PKCβII. Conclusions/Significance Our studies have identified genes that are aberrantly expressed during MOSE cell neoplastic progression. We show that early stage dysregulation of actin microfilaments is followed by progressive disorganization of microtubules and intermediate filaments at later stages. These stage-specific, step-wise changes provide further insights into the time and spatial sequence of events that lead to the fully transformed state since these changes are also observed in aggressive human ovarian cancer cell lines independent of their histological type. Moreover, our studies support a link between aberrant cytoskeleton organization and regulation of important downstream signaling events that may be involved in cancer progression. Thus, our MOSE-derived cell model represents a unique model for in depth mechanistic studies of ovarian cancer progression.en_US
dc.format.mimetypeapplication/pdfen_US
dc.language.isoen_USen_US
dc.publisherPLOSen_US
dc.rightsCreative Commons Attribution 4.0 Internationalen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.titleChanges in Gene Expression and Cellular Architecture in an Ovarian Cancer Progression Modelen_US
dc.typeArticle - Refereeden_US
dc.description.versionPeer Revieweden_US
dc.title.serialPLOS ONEen_US
dc.identifier.doihttps://doi.org/10.1371/journal.pone.0017676en_US
dc.identifier.volume6en_US
dc.identifier.issue3en_US
dc.type.dcmitypeTexten_US
dc.identifier.pmid21390237en_US
dc.identifier.eissn1932-6203en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 4.0 International
License: Creative Commons Attribution 4.0 International