Modeling and Controller Design of a Bidirectional Resonant Converter Battery Charger

dc.contributor.authorDalala, Zakariya M.en
dc.contributor.authorZahid, Zaka Ullahen
dc.contributor.authorSaadeh, Osama S.en
dc.contributor.authorLai, Jih-Shengen
dc.contributor.departmentElectrical and Computer Engineeringen
dc.date.accessioned2019-05-14T13:16:39Zen
dc.date.available2019-05-14T13:16:39Zen
dc.date.issued2018en
dc.description.abstractIn this paper, a controller design methodology is proposed for a CLLLC-type bidirectional resonant converter. The soft switching of all devices in this topology and the very high operating frequency lead to increased overall system efficiency. However, the dynamic nature of this converter is highly dependent on loading conditions, which proves challenging when designing the voltage and current closed-loop controllers. System instability is mainly due to the high-Q resonant peaking, which is observed in the open-loop bode-plots. In this paper, the controller design methodology is proposed, which accounts for the dynamics behavior due to load variations. The controller stability will be evaluated against the entire range of operating switching frequency. Both battery charging and regeneration modes will be described and analyzed. The focal contribution of this paper will focus on defining the worst operating scenarios for the converter using system-level modeling and analysis. In addition, the controller will be defined based on these operating points. To validate and verify the controller design methodology proposed, a 3.5-kW converter is designed with the appropriate output voltage and current loop controllers. The step response verified a stable system designed and thus proving the proposed controller design methodology.en
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1109/ACCESS.2018.2830321en
dc.identifier.eissn2169-3536en
dc.identifier.urihttp://hdl.handle.net/10919/89512en
dc.identifier.volume6en
dc.language.isoenen
dc.publisherIEEEen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectDC-DC power convertersen
dc.subjectbidirectional power flowen
dc.subjectresonant convertersen
dc.subjectcontrol designen
dc.subjectbattery chargeren
dc.subjectclosed-loop systemsen
dc.titleModeling and Controller Design of a Bidirectional Resonant Converter Battery Chargeren
dc.title.serialIEEE Accessen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
08347068.pdf
Size:
2.51 MB
Format:
Adobe Portable Document Format
Description: