Scattering and inverse scattering in one-dimensional nonhomogeneous media

dc.contributorVirginia Techen
dc.contributor.authorAktosun, T.en
dc.contributor.authorKlaus, Martinen
dc.contributor.authorvan der Mee, Cornelisen
dc.contributor.departmentMathematicsen
dc.date.accessed2014-03-20en
dc.date.accessioned2014-04-09T18:12:26Zen
dc.date.available2014-04-09T18:12:26Zen
dc.date.issued1992-05en
dc.description.abstractThe wave propagation in a one-dimensional nonhomogeneous medium is considered, where the wave speed and the restoring force depend on location. In the frequency domain this is equivalent to the Schrodinger equation d2-psi/dx2 + k2-psi = k2P(x)psi + Q(x)psi with an added potential proportional to energy. The scattering and bound-state solutions of this equation are studied and the properties of the scattering matrix are obtained; the inverse scattering problem of recovering the restoring force when the wave speed and the scattering data are known are also solved.en
dc.description.sponsorshipNSF DMS 9096268en
dc.description.sponsorshipCNR-GNFMen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationAktosun, T.; Klaus, M.; Vandermee, C., "Scattering and inverse scattering in one-dimensional nonhomogeneous media," J. Math. Phys. 33, 1717 (1992); http://dx.doi.org/10.1063/1.529650en
dc.identifier.doihttps://doi.org/10.1063/1.529650en
dc.identifier.issn0022-2488en
dc.identifier.urihttp://hdl.handle.net/10919/47081en
dc.identifier.urlhttp://scitation.aip.org/content/aip/journal/jmp/33/5/10.1063/1.529650en
dc.language.isoenen
dc.publisherAIP Publishingen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectschrodinger-equationen
dc.subjectlineen
dc.titleScattering and inverse scattering in one-dimensional nonhomogeneous mediaen
dc.title.serialJournal of Mathematical Physicsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1.529650.pdf
Size:
2.24 MB
Format:
Adobe Portable Document Format
Description:
Main article