Divided Difference Methods for Finite Fields

dc.contributor.authorWesselkamper, Thomas C.en
dc.contributor.departmentComputer Scienceen
dc.date.accessioned2013-06-19T14:36:46Zen
dc.date.available2013-06-19T14:36:46Zen
dc.date.issued1975en
dc.description.abstractThe Reed-Muller Decomposition Theorem is shown to be a special case of a theorem of Newton. Divided difference methods are developed for the general case of any finite field. The Newton Interpolation Theorem is proved for functions of one variable and stated for functions of two variables. Empirical results are given for some two place functions over GF(9) and GF(16).en
dc.format.mimetypeapplication/pdfen
dc.identifierhttp://eprints.cs.vt.edu/archive/00000798/en
dc.identifier.sourceurlhttp://eprints.cs.vt.edu/archive/00000798/01/CS75018-R.pdfen
dc.identifier.trnumberCS75018-Ren
dc.identifier.urihttp://hdl.handle.net/10919/20278en
dc.language.isoenen
dc.publisherDepartment of Computer Science, Virginia Polytechnic Institute & State Universityen
dc.relation.ispartofHistorical Collection(Till Dec 2001)en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.titleDivided Difference Methods for Finite Fieldsen
dc.typeTechnical reporten
dc.type.dcmitypeTexten
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
CS75018-R.pdf
Size:
900.94 KB
Format:
Adobe Portable Document Format