Scalable Accelerated Materials Discovery of Sustainable Polysaccharide-Based Hydrogels by Autonomous Experimentation and Collaborative Learning

dc.contributor.authorLiu, Yangen
dc.contributor.authorYue, Xuboen
dc.contributor.authorZhang, Junruen
dc.contributor.authorZhai, Zhenghaoen
dc.contributor.authorMoammeri, Alien
dc.contributor.authorEdgar, Kevin J.en
dc.contributor.authorBerahas, Albert S.en
dc.contributor.authorAl Kontar, Raeden
dc.contributor.authorJohnson, Blake N.en
dc.date.accessioned2025-10-10T18:23:59Zen
dc.date.available2025-10-10T18:23:59Zen
dc.date.issued2024-12-11en
dc.description.abstractWhile some materials can be discovered and engineered using standalone self-driving workflows, coordinating multiple stakeholders and workflows toward a common goal could advance autonomous experimentation (AE) for accelerated materials discovery (AMD). Here, we describe a scalable AMD paradigm based on AE and "collaborative learning". Collaborative learning using a novel consensus Bayesian optimization (BO) model enabled the rapid discovery of mechanically optimized composite polysaccharide hydrogels. The collaborative workflow outperformed a non-collaborating AMD workflow scaled by independent learning based on the trend of mechanical property evolution over eight experimental iterations, corresponding to a budget limit. After five iterations, four collaborating clients obtained notable material performance (i.e., composition discovery). Collaborative learning by consensus BO can enable scaling and performance optimization for a range of self-driving materials research workflows driven by optimally cooperating humans and machines that share a material design objective.en
dc.description.sponsorshipNational Science Foundation [DMR-1933525]; National Science Foundation (NSF) Materials Innovation Platform [CBET- 2141008, 2024]; NSF [2024]; Table of Contents (ToC) (Created in BioRender)en
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1021/acsami.4c16614en
dc.identifier.eissn1944-8252en
dc.identifier.issn1944-8244en
dc.identifier.issue51en
dc.identifier.pmid39661966en
dc.identifier.urihttps://hdl.handle.net/10919/138127en
dc.identifier.volume16en
dc.language.isoenen
dc.publisherAmerican Chemical Societyen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectmaterials genome initiativeen
dc.subjectautonomous experimentationen
dc.subjectBayesian optimizationen
dc.subjectactive learningen
dc.subjectglycomaterialsen
dc.titleScalable Accelerated Materials Discovery of Sustainable Polysaccharide-Based Hydrogels by Autonomous Experimentation and Collaborative Learningen
dc.title.serialACS Applied Materials & Interfacesen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LiuScalable.pdf
Size:
5.65 MB
Format:
Adobe Portable Document Format
Description:
Published version