Scalable Accelerated Materials Discovery of Sustainable Polysaccharide-Based Hydrogels by Autonomous Experimentation and Collaborative Learning
| dc.contributor.author | Liu, Yang | en |
| dc.contributor.author | Yue, Xubo | en |
| dc.contributor.author | Zhang, Junru | en |
| dc.contributor.author | Zhai, Zhenghao | en |
| dc.contributor.author | Moammeri, Ali | en |
| dc.contributor.author | Edgar, Kevin J. | en |
| dc.contributor.author | Berahas, Albert S. | en |
| dc.contributor.author | Al Kontar, Raed | en |
| dc.contributor.author | Johnson, Blake N. | en |
| dc.date.accessioned | 2025-10-10T18:23:59Z | en |
| dc.date.available | 2025-10-10T18:23:59Z | en |
| dc.date.issued | 2024-12-11 | en |
| dc.description.abstract | While some materials can be discovered and engineered using standalone self-driving workflows, coordinating multiple stakeholders and workflows toward a common goal could advance autonomous experimentation (AE) for accelerated materials discovery (AMD). Here, we describe a scalable AMD paradigm based on AE and "collaborative learning". Collaborative learning using a novel consensus Bayesian optimization (BO) model enabled the rapid discovery of mechanically optimized composite polysaccharide hydrogels. The collaborative workflow outperformed a non-collaborating AMD workflow scaled by independent learning based on the trend of mechanical property evolution over eight experimental iterations, corresponding to a budget limit. After five iterations, four collaborating clients obtained notable material performance (i.e., composition discovery). Collaborative learning by consensus BO can enable scaling and performance optimization for a range of self-driving materials research workflows driven by optimally cooperating humans and machines that share a material design objective. | en |
| dc.description.sponsorship | National Science Foundation [DMR-1933525]; National Science Foundation (NSF) Materials Innovation Platform [CBET- 2141008, 2024]; NSF [2024]; Table of Contents (ToC) (Created in BioRender) | en |
| dc.format.mimetype | application/pdf | en |
| dc.identifier.doi | https://doi.org/10.1021/acsami.4c16614 | en |
| dc.identifier.eissn | 1944-8252 | en |
| dc.identifier.issn | 1944-8244 | en |
| dc.identifier.issue | 51 | en |
| dc.identifier.pmid | 39661966 | en |
| dc.identifier.uri | https://hdl.handle.net/10919/138127 | en |
| dc.identifier.volume | 16 | en |
| dc.language.iso | en | en |
| dc.publisher | American Chemical Society | en |
| dc.rights | Creative Commons Attribution 4.0 International | en |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
| dc.subject | materials genome initiative | en |
| dc.subject | autonomous experimentation | en |
| dc.subject | Bayesian optimization | en |
| dc.subject | active learning | en |
| dc.subject | glycomaterials | en |
| dc.title | Scalable Accelerated Materials Discovery of Sustainable Polysaccharide-Based Hydrogels by Autonomous Experimentation and Collaborative Learning | en |
| dc.title.serial | ACS Applied Materials & Interfaces | en |
| dc.type | Article - Refereed | en |
| dc.type.dcmitype | Text | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- LiuScalable.pdf
- Size:
- 5.65 MB
- Format:
- Adobe Portable Document Format
- Description:
- Published version