On the efficiency of Hamiltonian-based quantum computation for low-rank matrices

dc.contributorVirginia Techen
dc.contributor.authorCao, Zhenweien
dc.contributor.authorElgart, Alexanderen
dc.contributor.departmentMathematicsen
dc.date.accessed2014-01-25en
dc.date.accessioned2014-01-23T13:49:07Zen
dc.date.available2014-01-23T13:49:07Zen
dc.date.issued2012-03en
dc.description.abstractWe present an extension of adiabatic quantum computing (AQC) algorithm for the unstructured search to the case when the number of marked items is unknown. The algorithm maintains the optimal Grover speedup and includes a small counting subroutine. Our other results include a lower bound on the amount of time needed to perform a general Hamiltonian-based quantum search, a lower bound on the evolution time needed to perform a search that is valid in the presence of control error and a generic upper bound on the minimum eigenvalue gap for evolutions. In particular, we demonstrate that quantum speedup for the unstructured search using AQC type algorithms may only be achieved under very rigid control precision requirements. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3690045]en
dc.description.sponsorshipNational Science Foundation (NSF) DMS-0907165en
dc.identifier.citationCao, Zhenwei; Elgart, Alexander, "On the efficiency of Hamiltonian-based quantum computation for low-rank matrices," J. Math. Phys. 53, 032201 (2012); http://dx.doi.org/10.1063/1.3690045en
dc.identifier.doihttps://doi.org/10.1063/1.3690045en
dc.identifier.issn0022-2488en
dc.identifier.urihttp://hdl.handle.net/10919/25117en
dc.identifier.urlhttp://scitation.aip.org/content/aip/journal/jmp/53/3/10.1063/1.3690045en
dc.language.isoen_USen
dc.publisherAIP Publishingen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectadiabatic theoremen
dc.subjectalgorithmsen
dc.titleOn the efficiency of Hamiltonian-based quantum computation for low-rank matricesen
dc.title.serialJournal of Mathematical Physicsen
dc.typeArticle - Refereeden

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1.3690045.pdf
Size:
362.5 KB
Format:
Adobe Portable Document Format
Description:
Main article