Long nonlinear waves in an unbounded rotating jet or rotating two-fluid flow
dc.contributor | Virginia Tech | en |
dc.contributor.author | Sun, S. M. | en |
dc.contributor.department | Mathematics | en |
dc.date.accessed | 2014-04-04 | en |
dc.date.accessioned | 2014-04-24T18:34:15Z | en |
dc.date.available | 2014-04-24T18:34:15Z | en |
dc.date.issued | 1994-03 | en |
dc.description.abstract | The objective of this paper is to study weakly nonlinear waves in an infinitely long rotating jet and a rotating two-fluid flow bounded by an infinitely long rigid cylinder with surface tension at the interface. The critical values for Rossby number, a nondimensional wave speed, are found. When the Rossby number is near one of the critical values, nonlinear theory is developed under long-wave approximation and the well-known Korteweg-de Vries (KdV) equations for the free surface and free interface are obtained. Then the solitary wave solutions are given as the first-order approximations of the solutions of the equations governing the motion of the flows. The analogy between the rotating fluid hows and a two-dimensional flow with density stratification is discussed. | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Sun, S. M., "Long nonlinear waves in an unbounded rotating jet or rotating two-fluid flow," Phys. Fluids 6, 1204 (1994); http://dx.doi.org/10.1063/1.868442 | en |
dc.identifier.doi | https://doi.org/10.1063/1.868442 | en |
dc.identifier.issn | 1070-6631 | en |
dc.identifier.uri | http://hdl.handle.net/10919/47638 | en |
dc.identifier.url | http://scitation.aip.org/content/aip/journal/pof2/6/3/10.1063/1.868442 | en |
dc.language.iso | en | en |
dc.publisher | AIP Publishing | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | spinning liquid column | en |
dc.subject | internal waves | en |
dc.subject | mixture | en |
dc.title | Long nonlinear waves in an unbounded rotating jet or rotating two-fluid flow | en |
dc.title.serial | Physics of Fluids | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 1.868442.pdf
- Size:
- 817.58 KB
- Format:
- Adobe Portable Document Format
- Description:
- Main article