Long nonlinear waves in an unbounded rotating jet or rotating two-fluid flow

dc.contributorVirginia Techen
dc.contributor.authorSun, S. M.en
dc.contributor.departmentMathematicsen
dc.date.accessed2014-04-04en
dc.date.accessioned2014-04-24T18:34:15Zen
dc.date.available2014-04-24T18:34:15Zen
dc.date.issued1994-03en
dc.description.abstractThe objective of this paper is to study weakly nonlinear waves in an infinitely long rotating jet and a rotating two-fluid flow bounded by an infinitely long rigid cylinder with surface tension at the interface. The critical values for Rossby number, a nondimensional wave speed, are found. When the Rossby number is near one of the critical values, nonlinear theory is developed under long-wave approximation and the well-known Korteweg-de Vries (KdV) equations for the free surface and free interface are obtained. Then the solitary wave solutions are given as the first-order approximations of the solutions of the equations governing the motion of the flows. The analogy between the rotating fluid hows and a two-dimensional flow with density stratification is discussed.en
dc.format.mimetypeapplication/pdfen
dc.identifier.citationSun, S. M., "Long nonlinear waves in an unbounded rotating jet or rotating two-fluid flow," Phys. Fluids 6, 1204 (1994); http://dx.doi.org/10.1063/1.868442en
dc.identifier.doihttps://doi.org/10.1063/1.868442en
dc.identifier.issn1070-6631en
dc.identifier.urihttp://hdl.handle.net/10919/47638en
dc.identifier.urlhttp://scitation.aip.org/content/aip/journal/pof2/6/3/10.1063/1.868442en
dc.language.isoenen
dc.publisherAIP Publishingen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectspinning liquid columnen
dc.subjectinternal wavesen
dc.subjectmixtureen
dc.titleLong nonlinear waves in an unbounded rotating jet or rotating two-fluid flowen
dc.title.serialPhysics of Fluidsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1.868442.pdf
Size:
817.58 KB
Format:
Adobe Portable Document Format
Description:
Main article