Giant strain with ultra-low hysteresis and high temperature stability in grain oriented lead-free K0.5Bi0.5TiO3-BaTiO3-Na0.5Bi0.5TiO3 piezoelectric materials
dc.contributor.author | Maurya, Deepam | en |
dc.contributor.author | Zhou, Yuan | en |
dc.contributor.author | Wang, Yaojin | en |
dc.contributor.author | Yan, Yongke | en |
dc.contributor.author | Li, Jiefang | en |
dc.contributor.author | Viehland, Dwight D. | en |
dc.contributor.author | Priya, Shashank | en |
dc.contributor.department | Center for Energy Harvesting Materials and Systems (CEHMS) | en |
dc.contributor.department | Materials Science and Engineering | en |
dc.date.accessioned | 2019-01-28T17:56:17Z | en |
dc.date.available | 2019-01-28T17:56:17Z | en |
dc.date.issued | 2015-02-26 | en |
dc.description.abstract | We synthesized grain-oriented lead-free piezoelectric materials in (K0.5Bi0.5TiO3-BaTiO3-xNa(0.5)Bi(0.5)TiO(3) (KBT-BT-NBT) system with high degree of texturing along the [001]c (c-cubic) crystallographic orientation. We demonstrate giant field induced strain (similar to 0.48%) with an ultra-low hysteresis along with enhanced piezoelectric response (d(33) similar to 190pC/N) and high temperature stability (similar to 160 degrees C). Transmission electron microscopy (TEM) and piezoresponse force microscopy (PFM) results demonstrate smaller size highly ordered domain structure in grain-oriented specimen relative to the conventional polycrystalline ceramics. The grain oriented specimens exhibited a high degree of non-180 degrees domain switching, in comparison to the randomly axed ones. These results indicate the effective solution to the lead-free piezoelectric materials. | en |
dc.description.notes | The authors gratefully acknowledge financial support from the Office of Basic Energy Science, Department of Energy through grant number DE-FG02-07ER46480. Thanks to Keyur B. Joshi for his help in calculating dissipated energy from the P-E hysteresis loops. | en |
dc.description.sponsorship | Office of Basic Energy Science, Department of Energy [DE-FG02-07ER46480] | en |
dc.format.extent | 8 | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1038/srep08595 | en |
dc.identifier.issn | 2045-2322 | en |
dc.identifier.other | 8595 | en |
dc.identifier.pmid | 25716551 | en |
dc.identifier.uri | http://hdl.handle.net/10919/87056 | en |
dc.identifier.volume | 5 | en |
dc.language.iso | en_US | en |
dc.publisher | Springer Nature | en |
dc.rights | Creative Commons Attribution 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | field-induced strain | en |
dc.subject | synthesis mechanism | en |
dc.subject | single-crystals | en |
dc.subject | ceramics | en |
dc.subject | films | en |
dc.title | Giant strain with ultra-low hysteresis and high temperature stability in grain oriented lead-free K0.5Bi0.5TiO3-BaTiO3-Na0.5Bi0.5TiO3 piezoelectric materials | en |
dc.title.serial | Scientific Reports | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
Files
Original bundle
1 - 1 of 1