CU-BEMS, smart building electricity consumption and indoor environmental sensor datasets
dc.contributor.author | Pipattanasomporn, Manisa | en |
dc.contributor.author | Chitalia, Gopal | en |
dc.contributor.author | Songsiri, Jitkomut | en |
dc.contributor.author | Aswakul, Chaodit | en |
dc.contributor.author | Pora, Wanchalerm | en |
dc.contributor.author | Suwankawin, Surapong | en |
dc.contributor.author | Audomvongseree, Kulyos | en |
dc.contributor.author | Hoonchareon, Naebboon | en |
dc.contributor.department | Electrical and Computer Engineering | en |
dc.date.accessioned | 2020-11-11T14:28:58Z | en |
dc.date.available | 2020-11-11T14:28:58Z | en |
dc.date.issued | 2020-07-20 | en |
dc.description.abstract | This paper describes the release of the detailed building operation data, including electricity consumption and indoor environmental measurements, of the seven-story 11,700-m(2) office building located in Bangkok, Thailand. The electricity consumption data (kW) are that of individual air conditioning units, lighting, and plug loads in each of the 33 zones of the building. The indoor environmental sensor data comprise temperature (degrees C), relative humidity (%), and ambient light (lux) measurements of the same zones. The entire datasets are available at one-minute intervals for the period of 18 months from July 1, 2018, to December 31, 2019. Such datasets can be used to support a wide range of applications, such as zone-level, floor-level, and building-level load forecasting, indoor thermal model development, validation of building simulation models, development of demand response algorithms by load type, anomaly detection methods, and reinforcement learning algorithms for control of multiple AC units. | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1038/s41597-020-00582-3 | en |
dc.identifier.eissn | 2052-4463 | en |
dc.identifier.issue | 1 | en |
dc.identifier.other | 241 | en |
dc.identifier.pmid | 32686680 | en |
dc.identifier.uri | http://hdl.handle.net/10919/100834 | en |
dc.identifier.volume | 7 | en |
dc.language.iso | en | en |
dc.rights | Creative Commons Attribution 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.title | CU-BEMS, smart building electricity consumption and indoor environmental sensor datasets | en |
dc.title.serial | Scientific Data | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- s41597-020-00582-3.pdf
- Size:
- 4.23 MB
- Format:
- Adobe Portable Document Format
- Description: