Self-Stabilizing Transpiration in Synthetic Leaves

dc.contributor.authorShi, Weiweien
dc.contributor.authorVieitez, Joshua R.en
dc.contributor.authorBerrier, Austin S.en
dc.contributor.authorRoseveare, Matthew W.en
dc.contributor.authorSurinach, Daniel A.en
dc.contributor.authorSrijanto, Bernadeta R.en
dc.contributor.authorCollier, C. Patricken
dc.contributor.authorBoreyko, Jonathan B.en
dc.contributor.departmentBiomedical Engineering and Mechanicsen
dc.date.accessioned2019-08-13T18:31:29Zen
dc.date.available2019-08-13T18:31:29Zen
dc.date.issued2019-04-10en
dc.description.abstractOver the past decade, synthetic trees have been engineered to mimic the transpiration cycle of natural plants, but the leaves are prone to dry out beneath a critical relative humidity. Here, we create large-area synthetic leaves whose transpiration process is remarkably stable over a wide range of humidities, even without synthetic stomatal chambers atop the nanopores of the leaf. While the water menisci cannot initially withstand the Kelvin stress of the subsaturated air, they self-stabilized by locally concentrating vapor within the top layers of nanopores that have dried up. Transpiration rates were found to vary nonmonotonically with the ambient humidity because of the tradeoff of dry air increasing the retreat length of the menisci. It is our hope that these findings will encourage the development of large-area synthetic trees that exhibit excellent stability and high throughput for water-harvesting applications.en
dc.description.notesPublic domain – authored by a U.S. government employeeen
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1021/acsami.9b00041en
dc.identifier.eissn1944-8252en
dc.identifier.issn1944-8244en
dc.identifier.issue14en
dc.identifier.pmid30912914en
dc.identifier.urihttp://hdl.handle.net/10919/93046en
dc.identifier.volume11en
dc.language.isoenen
dc.rightsCreative Commons CC0 1.0 Universal Public Domain Dedicationen
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/en
dc.subjectsynthetic leaf synthetic treeen
dc.subjectnanoporesen
dc.subjectLaplace pressureen
dc.subjectKelvin pressureen
dc.titleSelf-Stabilizing Transpiration in Synthetic Leavesen
dc.title.serialAcs Applied Materials & Interfacesen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.dcmitypeStillImageen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
acsami.9b00041.pdf
Size:
2.81 MB
Format:
Adobe Portable Document Format
Description: