A note on the switching adiabatic theorem
dc.contributor | Virginia Tech | en |
dc.contributor.author | Elgart, Alexander | en |
dc.contributor.author | Hagedorn, George A. | en |
dc.contributor.department | Mathematics | en |
dc.date.accessed | 2014-01-25 | en |
dc.date.accessioned | 2014-01-23T13:49:07Z | en |
dc.date.available | 2014-01-23T13:49:07Z | en |
dc.date.issued | 2012-10 | en |
dc.description.abstract | We derive a nearly optimal upper bound on the running time in the adiabatic theorem for a switching family of Hamiltonians. We assume the switching Hamiltonian is in the Gevrey class G(alpha) as a function of time, and we show that the error in adiabatic approximation remains small for running times of order g(-2) vertical bar ln g vertical bar(6 alpha). Here g denotes the minimal spectral gap between the eigenvalue(s) of interest and the rest of the spectrum of the instantaneous Hamiltonian. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4748968] | en |
dc.description.sponsorship | National Science Foundation DMS-0907165, DMS-1210982 | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Elgart, Alexander; Hagedorn, George A., "A note on the switching adiabatic theorem," J. Math. Phys. 53, 102202 (2012); http://dx.doi.org/10.1063/1.4748968 | en |
dc.identifier.doi | https://doi.org/10.1063/1.4748968 | en |
dc.identifier.issn | 0022-2488 | en |
dc.identifier.uri | http://hdl.handle.net/10919/25118 | en |
dc.identifier.url | http://scitation.aip.org/content/aip/journal/jmp/53/10/10.1063/1.4748968 | en |
dc.language.iso | en | en |
dc.publisher | AIP Publishing | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | evolution | en |
dc.subject | formula | en |
dc.title | A note on the switching adiabatic theorem | en |
dc.title.serial | Journal of Mathematical Physics | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 1.4748968.pdf
- Size:
- 311.19 KB
- Format:
- Adobe Portable Document Format
- Description:
- Main article