VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

Algorithms for Feature Selection in Rank-Order Spaces

Files

TR Number

TR-05-08

Date

2005

Journal Title

Journal ISSN

Volume Title

Publisher

Department of Computer Science, Virginia Polytechnic Institute & State University

Abstract

The problem of feature selection in supervised learning situations is considered, where all features are drawn from a common domain and are best interpreted via ordinal comparisons with other features, rather than as numerical values. In particular, each instance is a member of a space of ranked features. This problem is pertinent in electoral, financial, and bioinformatics contexts, where features denote assessments in terms of counts, ratings, or rankings. Four algorithms for feature selection in such rank-order spaces are presented; two are information-theoretic, and two are order-theoretic. These algorithms are empirically evaluated against both synthetic and real world datasets. The main results of this paper are (i) characterization of relationships and equivalences between different feature selection strategies with respect to the spaces in which they operate, and the distributions they seek to approximate; (ii) identification of computationally simple and efficient strategies that perform surprisingly well; and (iii) a feasibility study of order-theoretic feature selection for large scale datasets.

Description

Keywords

Bioinformatics, Algorithms, Data structures

Citation