Text and Data Mining Forum

dc.contributor.authorArrow, Tomen
dc.contributor.authorEwing, E. Thomasen
dc.contributor.authorFan, Weiguoen
dc.contributor.authorFox, Edward A.en
dc.contributor.authorHouse, Leanna L.en
dc.contributor.authorHuang, Berten
dc.contributor.authorPannabecker, Virginiaen
dc.contributor.departmentComputer Scienceen
dc.contributor.departmentCollege of Liberal Arts and Human Sciencesen
dc.contributor.departmentPamplin College of Businessen
dc.contributor.departmentStatisticsen
dc.date.accessioned2017-04-26T18:31:00Zen
dc.date.available2017-04-26T18:31:00Zen
dc.date.created2017-04-12en
dc.date.issued2017-04-12en
dc.description.abstractThis panel discussion was part of Open Data Week 2017 at Virginia Tech. Panelists discussed opportunities and challenges related to text and data mining, with a focus on research purposes and information access. Panelists: Tom Arrow (ContentMine), Tom Ewing (College of Liberal Arts and Human Sciences, Virginia Tech), Weiguo (Patrick) Fan (Pamplin College of Business, Virginia Tech), Ed Fox (Computer Science, Virginia Tech), Leanna House (Statistics, Virginia Tech), Brent Huang (Computer Science, Virginia Tech). Moderator: Virginia Pannabecker (University Libraries, Virginia Tech). Open Data Week 2017 events were supported by a Virginia Tech Beyond Boundaries innovation grant as well as a Virginia Tech faculty mentoring grant.en
dc.description.sponsorshipVirginia Tech. Department of Computer Scienceen
dc.description.sponsorshipVirginia Tech. College of Liberal Arts and Human Sciencesen
dc.description.sponsorshipVirginia Tech. Pamplin College of Businessen
dc.description.sponsorshipVirginia Tech. Department of Statisticsen
dc.format.extentDimensions: 853 x 480en
dc.format.extentDuration: 1:13:08en
dc.format.extentSize: 733 MBen
dc.format.mimetypevideo/mp4en
dc.format.mimetypevideo/webmen
dc.format.mimetypeimage/jpegen
dc.format.mimetypeapplication/pdfen
dc.format.mimetypetext.mp4-en.vtten
dc.identifiertextanddataminingforum_20170412.mp4en
dc.identifier.urihttp://hdl.handle.net/10919/77526en
dc.language.isoenen
dc.publisherVirginia Tech. University Librariesen
dc.relation.ispartofseriesOpen Data Weeken
dc.rightsIn Copyrighten
dc.rights.holderVirginia Techen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectData miningen
dc.subjectContentMineen
dc.titleText and Data Mining Forumen
dc.typePresentationen
dc.typeVideoen
dc.type.dcmitypeMoving Imageen
dc.type.dcmitypeEventen
dc.type.dcmitypeImageen

Files

Original bundle
Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
textanddataminingforum_20170412.mp4
Size:
699.08 MB
Format:
MP4 Container format for video files
Description:
Name:
textanddataminingforum_20170412.webm
Size:
675.22 MB
Format:
The webm video container format
Description:
Name:
textanddataminingforum_20170412.mp4-en.vtt
Size:
136.8 KB
Format:
Closed caption or subtitle file for HTML5 video
Description: