Text and Data Mining Forum
dc.contributor.author | Arrow, Tom | en |
dc.contributor.author | Ewing, E. Thomas | en |
dc.contributor.author | Fan, Weiguo | en |
dc.contributor.author | Fox, Edward A. | en |
dc.contributor.author | House, Leanna L. | en |
dc.contributor.author | Huang, Bert | en |
dc.contributor.author | Pannabecker, Virginia | en |
dc.contributor.department | Computer Science | en |
dc.contributor.department | College of Liberal Arts and Human Sciences | en |
dc.contributor.department | Pamplin College of Business | en |
dc.contributor.department | Statistics | en |
dc.date.accessioned | 2017-04-26T18:31:00Z | en |
dc.date.available | 2017-04-26T18:31:00Z | en |
dc.date.created | 2017-04-12 | en |
dc.date.issued | 2017-04-12 | en |
dc.description.abstract | This panel discussion was part of Open Data Week 2017 at Virginia Tech. Panelists discussed opportunities and challenges related to text and data mining, with a focus on research purposes and information access. Panelists: Tom Arrow (ContentMine), Tom Ewing (College of Liberal Arts and Human Sciences, Virginia Tech), Weiguo (Patrick) Fan (Pamplin College of Business, Virginia Tech), Ed Fox (Computer Science, Virginia Tech), Leanna House (Statistics, Virginia Tech), Brent Huang (Computer Science, Virginia Tech). Moderator: Virginia Pannabecker (University Libraries, Virginia Tech). Open Data Week 2017 events were supported by a Virginia Tech Beyond Boundaries innovation grant as well as a Virginia Tech faculty mentoring grant. | en |
dc.description.sponsorship | Virginia Tech. Department of Computer Science | en |
dc.description.sponsorship | Virginia Tech. College of Liberal Arts and Human Sciences | en |
dc.description.sponsorship | Virginia Tech. Pamplin College of Business | en |
dc.description.sponsorship | Virginia Tech. Department of Statistics | en |
dc.format.extent | Dimensions: 853 x 480 | en |
dc.format.extent | Duration: 1:13:08 | en |
dc.format.extent | Size: 733 MB | en |
dc.format.mimetype | video/mp4 | en |
dc.format.mimetype | video/webm | en |
dc.format.mimetype | image/jpeg | en |
dc.format.mimetype | application/pdf | en |
dc.format.mimetype | text.mp4-en.vtt | en |
dc.identifier | textanddataminingforum_20170412.mp4 | en |
dc.identifier.uri | http://hdl.handle.net/10919/77526 | en |
dc.language.iso | en | en |
dc.publisher | Virginia Tech. University Libraries | en |
dc.relation.ispartofseries | Open Data Week | en |
dc.rights | In Copyright | en |
dc.rights.holder | Virginia Tech | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | Data mining | en |
dc.subject | ContentMine | en |
dc.title | Text and Data Mining Forum | en |
dc.type | Presentation | en |
dc.type | Video | en |
dc.type.dcmitype | Moving Image | en |
dc.type.dcmitype | Event | en |
dc.type.dcmitype | Image | en |
Files
Original bundle
1 - 3 of 3
Loading...
- Name:
- textanddataminingforum_20170412.mp4
- Size:
- 699.08 MB
- Format:
- MP4 Container format for video files
- Description:
- Name:
- textanddataminingforum_20170412.webm
- Size:
- 675.22 MB
- Format:
- The webm video container format
- Description:
- Name:
- textanddataminingforum_20170412.mp4-en.vtt
- Size:
- 136.8 KB
- Format:
- Closed caption or subtitle file for HTML5 video
- Description: