Using artificial intelligence for improving stroke diagnosis in emergency departments: a practical framework
dc.contributor.author | Abedi, Vida | en |
dc.contributor.author | Khan, Ayesha | en |
dc.contributor.author | Chaudhary, Durgesh | en |
dc.contributor.author | Misra, Debdipto | en |
dc.contributor.author | Avula, Venkatesh | en |
dc.contributor.author | Mathrawala, Dhruv | en |
dc.contributor.author | Kraus, Chadd | en |
dc.contributor.author | Marshall, Kyle A. | en |
dc.contributor.author | Chaudhary, Nayan | en |
dc.contributor.author | Li, Xiao | en |
dc.contributor.author | Schirmer, Clemens M. | en |
dc.contributor.author | Scalzo, Fabien | en |
dc.contributor.author | Li, Jiang | en |
dc.contributor.author | Zand, Ramin | en |
dc.contributor.department | Fralin Life Sciences Institute | en |
dc.date.accessioned | 2020-10-09T14:09:06Z | en |
dc.date.available | 2020-10-09T14:09:06Z | en |
dc.date.issued | 2020-08 | en |
dc.description.abstract | Stroke is the fifth leading cause of death in the United States and a major cause of severe disability worldwide. Yet, recognizing the signs of stroke in an acute setting is still challenging and leads to loss of opportunity to intervene, given the narrow therapeutic window. A decision support system using artificial intelligence (AI) and clinical data from electronic health records combined with patients' presenting symptoms can be designed to support emergency department providers in stroke diagnosis and subsequently reduce the treatment delay. In this article, we present a practical framework to develop a decision support system using AI by reflecting on the various stages, which could eventually improve patient care and outcome. We also discuss the technical, operational, and ethical challenges of the process. | en |
dc.description.notes | This work was sponsored in part by funds from the Geisinger Health Plan Quality Fund and National Institute of Health R56HL116832 (subaward) to VA and RZ. The funders had no role in study design, data collection, and interpretation, or the decision to submit the work for publication. | en |
dc.description.sponsorship | Geisinger Health Plan Quality Fund; National Institute of HealthUnited States Department of Health & Human ServicesNational Institutes of Health (NIH) - USA [R56HL116832] | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1177/1756286420938962 | en |
dc.identifier.eissn | 1756-2864 | en |
dc.identifier.issn | 1756-2856 | en |
dc.identifier.other | 1756286420938962 | en |
dc.identifier.pmid | 32922515 | en |
dc.identifier.uri | http://hdl.handle.net/10919/100316 | en |
dc.identifier.volume | 13 | en |
dc.language.iso | en | en |
dc.rights | Creative Commons Attribution-NonCommercial 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | en |
dc.subject | acute stroke | en |
dc.subject | artificial intelligence | en |
dc.subject | cerebrovascular disease | en |
dc.subject | stroke | en |
dc.subject | computer aided diagnosis | en |
dc.subject | ischemic stroke | en |
dc.subject | Machine learning | en |
dc.subject | stroke diagnosis | en |
dc.subject | stroke in emergency department | en |
dc.title | Using artificial intelligence for improving stroke diagnosis in emergency departments: a practical framework | en |
dc.title.serial | Therapeutic Advances In Neurological Disorders | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 1756286420938962.pdf
- Size:
- 636.27 KB
- Format:
- Adobe Portable Document Format
- Description: