Nonlinear piezoelectricity in electroelastic energy harvesters: Modeling and experimental identification

dc.contributorVirginia Tech. Center for Intelligent Material Systems and Structuresen
dc.contributorDuke University. Department of Mechanical Engineering. Nonlinear Dynamical Systems Laboratoryen
dc.contributor.authorStanton, Samuel C.en
dc.contributor.authorErturk, Alperen
dc.contributor.authorMann, Brian P.en
dc.contributor.authorInman, Daniel J.en
dc.contributor.departmentCenter for Intelligent Material Systems and Structures (CIMSS)en
dc.date.accessed2015-04-24en
dc.date.accessioned2015-05-05T16:31:35Zen
dc.date.available2015-05-05T16:31:35Zen
dc.date.issued2010-10-01en
dc.description.abstractWe propose and experimentally validate a first-principles based model for the nonlinear piezoelectric response of an electroelastic energy harvester. The analysis herein highlights the importance of modeling inherent piezoelectric nonlinearities that are not limited to higher order elastic effects but also include nonlinear coupling to a power harvesting circuit. Furthermore, a nonlinear damping mechanism is shown to accurately restrict the amplitude and bandwidth of the frequency response. The linear piezoelectric modeling framework widely accepted for theoretical investigations is demonstrated to be a weak presumption for near-resonant excitation amplitudes as low as 0.5 g in a prefabricated bimorph whose oscillation amplitudes remain geometrically linear for the full range of experimental tests performed (never exceeding 0.25% of the cantilever overhang length). Nonlinear coefficients are identified via a nonlinear least-squares optimization algorithm that utilizes an approximate analytic solution obtained by the method of harmonic balance. For lead zirconate titanate (PZT-5H), we obtained a fourth order elastic tensor component of c(1111)(p)=-3.6673 x 10(17) N/m(2) and a fourth order electroelastic tensor value of e(3111)=1.7212 x 10(8) m/V. (C) 2010 American Institute of Physics. [doi:10.1063/1.3486519]en
dc.description.sponsorshipDr. Ronald Joslinen
dc.description.sponsorshipONR Young Investigator Awarden
dc.description.sponsorshipUnited States. Air Force. Office of Scientific Research. Multidisciplinary University Research Initiative (MURI) Program - Grant No. F-9550-06-1-0326: Energy Harvesting and Storage Systems for Future Air Force Vehiclesen
dc.format.extent10 pagesen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationStanton, Samuel C., Erturk, Alper, Mann, Brian P., Inman, Daniel J. (2010). Nonlinear piezoelectricity in electroelastic energy harvesters: Modeling and experimental identification. Journal of Applied Physics, 108(7). doi: 10.1063/1.3486519en
dc.identifier.doihttps://doi.org/10.1063/1.3486519en
dc.identifier.issn0021-8979en
dc.identifier.urihttp://hdl.handle.net/10919/52008en
dc.identifier.urlhttp://scitation.aip.org/content/aip/journal/jap/108/7/10.1063/1.3486519en
dc.language.isoen_USen
dc.publisherAmerican Institute of Physicsen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectPiezoelectric fieldsen
dc.subjectPiezoelectricityen
dc.subjectThermoelasticityen
dc.subjectElasticityen
dc.subjectPiezoelectric devicesen
dc.titleNonlinear piezoelectricity in electroelastic energy harvesters: Modeling and experimental identificationen
dc.title.serialJournal of Applied Physicsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2010_Nonlinear_piezoelectricity_electroelastic.pdf
Size:
714.69 KB
Format:
Adobe Portable Document Format
Description: