Nonlinear piezoelectricity in electroelastic energy harvesters: Modeling and experimental identification
dc.contributor | Virginia Tech. Center for Intelligent Material Systems and Structures | en |
dc.contributor | Duke University. Department of Mechanical Engineering. Nonlinear Dynamical Systems Laboratory | en |
dc.contributor.author | Stanton, Samuel C. | en |
dc.contributor.author | Erturk, Alper | en |
dc.contributor.author | Mann, Brian P. | en |
dc.contributor.author | Inman, Daniel J. | en |
dc.contributor.department | Center for Intelligent Material Systems and Structures (CIMSS) | en |
dc.date.accessed | 2015-04-24 | en |
dc.date.accessioned | 2015-05-05T16:31:35Z | en |
dc.date.available | 2015-05-05T16:31:35Z | en |
dc.date.issued | 2010-10-01 | en |
dc.description.abstract | We propose and experimentally validate a first-principles based model for the nonlinear piezoelectric response of an electroelastic energy harvester. The analysis herein highlights the importance of modeling inherent piezoelectric nonlinearities that are not limited to higher order elastic effects but also include nonlinear coupling to a power harvesting circuit. Furthermore, a nonlinear damping mechanism is shown to accurately restrict the amplitude and bandwidth of the frequency response. The linear piezoelectric modeling framework widely accepted for theoretical investigations is demonstrated to be a weak presumption for near-resonant excitation amplitudes as low as 0.5 g in a prefabricated bimorph whose oscillation amplitudes remain geometrically linear for the full range of experimental tests performed (never exceeding 0.25% of the cantilever overhang length). Nonlinear coefficients are identified via a nonlinear least-squares optimization algorithm that utilizes an approximate analytic solution obtained by the method of harmonic balance. For lead zirconate titanate (PZT-5H), we obtained a fourth order elastic tensor component of c(1111)(p)=-3.6673 x 10(17) N/m(2) and a fourth order electroelastic tensor value of e(3111)=1.7212 x 10(8) m/V. (C) 2010 American Institute of Physics. [doi:10.1063/1.3486519] | en |
dc.description.sponsorship | Dr. Ronald Joslin | en |
dc.description.sponsorship | ONR Young Investigator Award | en |
dc.description.sponsorship | United States. Air Force. Office of Scientific Research. Multidisciplinary University Research Initiative (MURI) Program - Grant No. F-9550-06-1-0326: Energy Harvesting and Storage Systems for Future Air Force Vehicles | en |
dc.format.extent | 10 pages | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Stanton, Samuel C., Erturk, Alper, Mann, Brian P., Inman, Daniel J. (2010). Nonlinear piezoelectricity in electroelastic energy harvesters: Modeling and experimental identification. Journal of Applied Physics, 108(7). doi: 10.1063/1.3486519 | en |
dc.identifier.doi | https://doi.org/10.1063/1.3486519 | en |
dc.identifier.issn | 0021-8979 | en |
dc.identifier.uri | http://hdl.handle.net/10919/52008 | en |
dc.identifier.url | http://scitation.aip.org/content/aip/journal/jap/108/7/10.1063/1.3486519 | en |
dc.language.iso | en_US | en |
dc.publisher | American Institute of Physics | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | Piezoelectric fields | en |
dc.subject | Piezoelectricity | en |
dc.subject | Thermoelasticity | en |
dc.subject | Elasticity | en |
dc.subject | Piezoelectric devices | en |
dc.title | Nonlinear piezoelectricity in electroelastic energy harvesters: Modeling and experimental identification | en |
dc.title.serial | Journal of Applied Physics | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 2010_Nonlinear_piezoelectricity_electroelastic.pdf
- Size:
- 714.69 KB
- Format:
- Adobe Portable Document Format
- Description: