Poster: BystandAR: Protecting Bystander Visual Data in Augmented Reality Systems

TR Number



Journal Title

Journal ISSN

Volume Title




Augmented Reality (AR) devices are set apart from other mobile devices by the immersive experience they offer. While the powerful suite of sensors on modern AR devices is necessary for enabling such an immersive experience, they can create unease in bystanders (i.e., those surrounding the device during its use) due to potential bystander data leaks, which is called the bystander privacy problem. In this poster, we propose BystandAR, the first practical system that can effectively protect bystander visual (camera and depth) data in real-time with only on-device processing. BystandAR builds on a key insight that the device user’s eye gaze and voice are highly effective indicators for subject/bystander detection in interpersonal interaction, and leverages novel AR capabilities such as eye gaze tracking, wearer-focused microphone, and spatial awareness to achieve a usable frame rate without offloading sensitive information. Through a 16-participant user study,we showthat BystandAR correctly identifies and protects 98.14% of bystanders while allowing access to 96.27% of subjects. We accomplish this with average frame rates of 52.6 frames per second without the need to offload unprotected bystander data to another device.