Potential use of engineered nanoparticles in ocean fertilization for large-scale atmospheric carbon dioxide removal
dc.contributor.author | Babakhani, Peyman | en |
dc.contributor.author | Phenrat, Tanapon | en |
dc.contributor.author | Baalousha, Mohammed | en |
dc.contributor.author | Soratana, Kullapa | en |
dc.contributor.author | Peacock, Caroline L. | en |
dc.contributor.author | Twining, Benjamin S. | en |
dc.contributor.author | Hochella, Michael F. Jr. | en |
dc.date.accessioned | 2023-04-18T12:17:36Z | en |
dc.date.available | 2023-04-18T12:17:36Z | en |
dc.date.issued | 2022-12 | en |
dc.description.abstract | This Analysis considers the potential benefits and challenges of applying engineered nanoparticles for artificial-ocean-fertilization-driven carbon sequestration Artificial ocean fertilization (AOF) aims to safely stimulate phytoplankton growth in the ocean and enhance carbon sequestration. AOF carbon sequestration efficiency appears lower than natural ocean fertilization processes due mainly to the low bioavailability of added nutrients, along with low export rates of AOF-produced biomass to the deep ocean. Here we explore the potential application of engineered nanoparticles (ENPs) to overcome these issues. Data from 123 studies show that some ENPs may enhance phytoplankton growth at concentrations below those likely to be toxic in marine ecosystems. ENPs may also increase bloom lifetime, boost phytoplankton aggregation and carbon export, and address secondary limiting factors in AOF. Life-cycle assessment and cost analyses suggest that net CO2 capture is possible for iron, SiO2 and Al2O3 ENPs with costs of 2-5 times that of conventional AOF, whereas boosting AOF efficiency by ENPs should substantially enhance net CO2 capture and reduce these costs. Therefore, ENP-based AOF can be an important component of the mitigation strategy to limit global warming. | en |
dc.description.notes | P.B. and C.L.P. acknowledge support from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant agreement No. 725613 MinOrg). B.S.T. received support from the Grantham Foundation for the Protection of the Environment. We thank Christian Marz, and William B. Homoky for reviewing an early draft of the paper and the anonymous reviewers for their constructive comments which improved the manuscript. | en |
dc.description.sponsorship | European Research Council (ERC) under the European Union [725613]; Grantham Foundation for the Protection of the Environment | en |
dc.description.version | Published version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1038/s41565-022-01226-w | en |
dc.identifier.eissn | 1748-3395 | en |
dc.identifier.issue | 12 | en |
dc.identifier.pmid | 36443601 | en |
dc.identifier.uri | http://hdl.handle.net/10919/114534 | en |
dc.identifier.volume | 17 | en |
dc.language.iso | en | en |
dc.publisher | Nature Portfolio | en |
dc.rights | Creative Commons Attribution 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | Oxide nanoparticles | en |
dc.subject | iron fertilization | en |
dc.subject | nanotechnology | en |
dc.subject | stabilization | en |
dc.subject | opportunities | en |
dc.subject | growth | en |
dc.subject | export | en |
dc.subject | fate | en |
dc.subject | zinc | en |
dc.title | Potential use of engineered nanoparticles in ocean fertilization for large-scale atmospheric carbon dioxide removal | en |
dc.title.serial | Nature Nanotechnology | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- s41565-022-01226-w.pdf
- Size:
- 1.99 MB
- Format:
- Adobe Portable Document Format
- Description:
- Published version