Shotgun Metagenomics Reveals Taxonomic and Functional Shifts in Hot Water Microbiome Due to Temperature Setting and Stagnation

dc.contributor.authorDai, Dongjuanen
dc.contributor.authorRhoads, William J.en
dc.contributor.authorEdwards, Marc A.en
dc.contributor.authorPruden, Amyen
dc.contributor.departmentCivil and Environmental Engineeringen
dc.date.accessioned2019-03-13T18:34:27Zen
dc.date.available2019-03-13T18:34:27Zen
dc.date.issued2018-11-13en
dc.description.abstractHot water premise plumbing has emerged as a critical nexus of energy, water, and public health. The composition of hot water microbiomes is of special interest given daily human exposure to resident flora, especially opportunistic pathogens (OPs), which rely on complex microbial ecological interactions for their proliferation. Here, we applied shotgun metagenomic sequencing to characterize taxonomic and functional shifts in microbiomes as a function of water heater temperature setting, stagnation in distal pipes, and associated shifts in water chemistry. A cross-section of samples from controlled, replicated, pilot-scale hot water plumbing rigs representing different temperature settings (39, 42, and 51 degrees C), stagnation periods (8 h vs. 7 days), and time-points, were analyzed. Temperature setting exhibited an overarching impact on taxonomic and functional gene composition. Further, distinct taxa were selectively enriched by specific temperature settings (e.g., Legionella at 39 degrees C vs. Deinococcus at 51 degrees C), while relative abundances of genes encoding corresponding cellular functions were highly consistent with expectations based on the taxa driving these shifts. Stagnation in distal taps diminished taxonomic and functional differences induced by heating the cold influent water to hot water in recirculating line. In distal taps relative to recirculating hot water, reads annotated as being involved in metabolism and growth decreased, while annotations corresponding to stress response (e.g., virulence disease and defense, and specifically antibiotic resistance) increased. Reads corresponding to OPs were readily identified by metagenomic analysis, with L. pneumophlla reads in particular correlating remarkably well with gene copy numbers measured by quantitative polymerase chain reaction. Positive correlations between L. pneumophila reads and those of known protozoan hosts were also identified. Elevated proportions of genes encoding metal resistance and hydrogen metabolism were noted, which was consistent with elevated corrosion-induced metal concentrations and hydrogen generation. This study provided new insights into real-world factors influencing taxonomic and functional compositions of hot water microbiomes. Here metagenomics is demonstrated as an effective tool for screening for potential presence, and even quantities, of pathogens, while also providing diagnostic capabilities for assessing functional responses of microbiomes to various operational conditions. These findings can aid in informing future monitoring and intentional control of hot water microbiomes.en
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.3389/fmicb.2018.02695en
dc.identifier.issn1664-302Xen
dc.identifier.other2695en
dc.identifier.pmid30542327en
dc.identifier.urihttp://hdl.handle.net/10919/88435en
dc.identifier.volume9en
dc.language.isoenen
dc.publisherFrontiersen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.titleShotgun Metagenomics Reveals Taxonomic and Functional Shifts in Hot Water Microbiome Due to Temperature Setting and Stagnationen
dc.title.serialFrontiers in Microbiologyen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
fmicb-09-02695.pdf
Size:
2.24 MB
Format:
Adobe Portable Document Format
Description: