GLM Versus Continuous Approximation for Convex Integer Programs
dc.contributor.author | Greenberg, Harvey J. | en |
dc.contributor.department | Computer Science | en |
dc.date.accessioned | 2013-06-19T14:36:10Z | en |
dc.date.available | 2013-06-19T14:36:10Z | en |
dc.date.issued | 1974 | en |
dc.description.abstract | GLM is compared to continuous approximation for convex, integer programs. After noting the stronger bound provided by GLM, Lagrangian duality and a gap closing heuristic is used to demonstrate how GLM may provide a better feasible policy as well. | en |
dc.format.mimetype | application/pdf | en |
dc.identifier | http://eprints.cs.vt.edu/archive/00000775/ | en |
dc.identifier.sourceurl | http://eprints.cs.vt.edu/archive/00000775/01/CS74022-R.pdf | en |
dc.identifier.trnumber | CS74022-R | en |
dc.identifier.uri | http://hdl.handle.net/10919/20256 | en |
dc.language.iso | en | en |
dc.publisher | Department of Computer Science, Virginia Polytechnic Institute & State University | en |
dc.relation.ispartof | Historical Collection(Till Dec 2001) | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.title | GLM Versus Continuous Approximation for Convex Integer Programs | en |
dc.type | Technical report | en |
dc.type.dcmitype | Text | en |
Files
Original bundle
1 - 1 of 1