GLM Versus Continuous Approximation for Convex Integer Programs

dc.contributor.authorGreenberg, Harvey J.en
dc.contributor.departmentComputer Scienceen
dc.date.accessioned2013-06-19T14:36:10Zen
dc.date.available2013-06-19T14:36:10Zen
dc.date.issued1974en
dc.description.abstractGLM is compared to continuous approximation for convex, integer programs. After noting the stronger bound provided by GLM, Lagrangian duality and a gap closing heuristic is used to demonstrate how GLM may provide a better feasible policy as well.en
dc.format.mimetypeapplication/pdfen
dc.identifierhttp://eprints.cs.vt.edu/archive/00000775/en
dc.identifier.sourceurlhttp://eprints.cs.vt.edu/archive/00000775/01/CS74022-R.pdfen
dc.identifier.trnumberCS74022-Ren
dc.identifier.urihttp://hdl.handle.net/10919/20256en
dc.language.isoenen
dc.publisherDepartment of Computer Science, Virginia Polytechnic Institute & State Universityen
dc.relation.ispartofHistorical Collection(Till Dec 2001)en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.titleGLM Versus Continuous Approximation for Convex Integer Programsen
dc.typeTechnical reporten
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
CS74022-R.pdf
Size:
201.69 KB
Format:
Adobe Portable Document Format