Dissipative Waves in Fluids Having Both Positive and Negative Nonlinearity
dc.contributor.author | Cramer, Mark S. | en |
dc.contributor.author | Kluwick, A. | en |
dc.contributor.author | Watson, Layne T. | en |
dc.contributor.author | Pelz, Wolfgang | en |
dc.contributor.department | Computer Science | en |
dc.date.accessioned | 2013-06-19T14:35:58Z | en |
dc.date.available | 2013-06-19T14:35:58Z | en |
dc.date.issued | 1986 | en |
dc.description.abstract | The present study examines weakly dissipative, weakly nonlinear waves in which the fundamental derivative changes sign. The undisturbed state is taken to be at rest, uniform and in the vicinity of the 0 locus. The cubic Burgers equation governing these waves is solved numerically; the resultant solutions are compared and contrasted to those of the invisced theory. Further results include the presentation of a natural scaling law and inviscid solutions not reported elsewhere. | en |
dc.format.mimetype | application/pdf | en |
dc.identifier | http://eprints.cs.vt.edu/archive/00000045/ | en |
dc.identifier.sourceurl | http://eprints.cs.vt.edu/archive/00000045/01/TR-86-39.pdf | en |
dc.identifier.trnumber | TR-86-39 | en |
dc.identifier.uri | http://hdl.handle.net/10919/19945 | en |
dc.language.iso | en | en |
dc.publisher | Department of Computer Science, Virginia Polytechnic Institute & State University | en |
dc.relation.ispartof | Historical Collection(Till Dec 2001) | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.title | Dissipative Waves in Fluids Having Both Positive and Negative Nonlinearity | en |
dc.type | Technical report | en |
dc.type.dcmitype | Text | en |
Files
Original bundle
1 - 1 of 1