Dissipative Waves in Fluids Having Both Positive and Negative Nonlinearity

dc.contributor.authorCramer, Mark S.en
dc.contributor.authorKluwick, A.en
dc.contributor.authorWatson, Layne T.en
dc.contributor.authorPelz, Wolfgangen
dc.contributor.departmentComputer Scienceen
dc.date.accessioned2013-06-19T14:35:58Zen
dc.date.available2013-06-19T14:35:58Zen
dc.date.issued1986en
dc.description.abstractThe present study examines weakly dissipative, weakly nonlinear waves in which the fundamental derivative changes sign. The undisturbed state is taken to be at rest, uniform and in the vicinity of the 0 locus. The cubic Burgers equation governing these waves is solved numerically; the resultant solutions are compared and contrasted to those of the invisced theory. Further results include the presentation of a natural scaling law and inviscid solutions not reported elsewhere.en
dc.format.mimetypeapplication/pdfen
dc.identifierhttp://eprints.cs.vt.edu/archive/00000045/en
dc.identifier.sourceurlhttp://eprints.cs.vt.edu/archive/00000045/01/TR-86-39.pdfen
dc.identifier.trnumberTR-86-39en
dc.identifier.urihttp://hdl.handle.net/10919/19945en
dc.language.isoenen
dc.publisherDepartment of Computer Science, Virginia Polytechnic Institute & State Universityen
dc.relation.ispartofHistorical Collection(Till Dec 2001)en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.titleDissipative Waves in Fluids Having Both Positive and Negative Nonlinearityen
dc.typeTechnical reporten
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR-86-39.pdf
Size:
1.05 MB
Format:
Adobe Portable Document Format