A membrane with ion fluxes responsive to temperature, pH and voltage

dc.contributor.authorYang, Quanen
dc.contributor.authorWhiting, William I.en
dc.contributor.authorDettori, Riccardoen
dc.contributor.departmentChemical Engineeringen
dc.date.accessioned2019-08-13T12:50:16Zen
dc.date.available2019-08-13T12:50:16Zen
dc.date.issued2019-05-15en
dc.description.abstractCell membranes of biological cells embedded with nuclear pore complexes (NPCs) are capable of controlling the flow of ions, e.g. Na+, K+ and Ca2+ by responding to stimuli, e.g. pH and voltage. From the inspiration of NPCs, researchers have been endeavoring to develop nanogates to achieve the control of ion transport, but the developed nanogates only have a low selectivity, the factor of change (FC) in ion fluxes due to ON/OFF switching. To our knowledge, nanogates with high responsiveness to temperature changes have not been reported. As such membranes etched with nanopores having a high selectivity (FC) and the reversible gating of temperature, pH and voltage were to be developed in the work. The nanogates were modified with DNA strands, whose linkers, the six nucleobases at 3' ends, are complementary. According to the experimental results, at mildly acidic pH values, e.g. pH 5.3, the prepared nanogate is in an open state, while at neutral pH values, e.g. pH 7.9, it is shut off. The change in ion fluxes is up to a factor of 90, which is remarkably high compared to other nanogates reported. It is observed experimentally that promoting the number of the complementary nucleobases at the 3' ends of the strands would improve nanogate performance significantly, while varying the other nucleobases exerts little effects. Hence the formation of nucleobase pairs among the complementary nucleobases at the 3' ends of the strands leads to the binding of various strands, self-assembly of a strand web and blockage of ion transport. When the temperature is increased, due to the promotion of the thermal motion of DNA strands, the nucleobase pairs and the strand web will not be generated and the nanogate will remain open even at pH 7.9. Hence the nanogate developed is capable of responding to temperature changes. Further experiments were performed to investigate the influence of the NaCl concentrations and small opening diameters exerted on nanogate performance.en
dc.description.notesPublic domain – authored by a U.S. government employeeen
dc.identifier.doihttps://doi.org/10.1016/j.memsci.2019.02.024en
dc.identifier.eissn1873-3123en
dc.identifier.issn0376-7388en
dc.identifier.urihttp://hdl.handle.net/10919/93041en
dc.identifier.volume578en
dc.language.isoenen
dc.rightsCreative Commons CC0 1.0 Universal Public Domain Dedicationen
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/en
dc.subjectMembraneen
dc.subjectNanogateen
dc.subjectTemperature-en
dc.subjectpH- and voltage-responsiveen
dc.subjectSelf-assemblyen
dc.titleA membrane with ion fluxes responsive to temperature, pH and voltageen
dc.title.serialJournal of Membrane Scienceen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.dcmitypeStillImageen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0376738818320192-main.pdf
Size:
1.1 MB
Format:
Adobe Portable Document Format
Description: