An elementary nonlinear beam theory with finite buckling deformation properties
dc.contributor | Virginia Tech | en |
dc.contributor.author | Russell, David L. | en |
dc.contributor.author | White, Luther W. | en |
dc.contributor.department | Mathematics | en |
dc.date.accessed | 2014-05-27 | en |
dc.date.accessioned | 2014-05-28T18:35:01Z | en |
dc.date.available | 2014-05-28T18:35:01Z | en |
dc.date.issued | 2002-04 | en |
dc.description.abstract | A simple nonlinear beam model is derived from basic principles. The assumption upon which the derivation is based is that axial motions are of second order compared with transverse motions of the beam. The existence of solutions is established. Issues concerning the uniqueness and nonuniqueness of solutions are examined with regard to buckling behavior. The numerical treatment of problems with nonunique solutions is presented. The results of buckling calculations are presented. | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Russell, D. L.; White, L. W., "An elementary nonlinear beam theory with finite buckling deformation properties," SIAM J. Appl. Math., 62(4), 1394-1413, (2002). DOI: 10.1137/050634268 | en |
dc.identifier.doi | https://doi.org/10.1137/s0036139996309138 | en |
dc.identifier.issn | 0036-1399 | en |
dc.identifier.uri | http://hdl.handle.net/10919/48134 | en |
dc.identifier.url | http://epubs.siam.org/doi/abs/10.1137/S0036139996309138 | en |
dc.language.iso | en | en |
dc.publisher | Siam Publications | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | elastic beam | en |
dc.subject | nonlinear beam | en |
dc.subject | buckling | en |
dc.subject | ordinary differential equations | en |
dc.subject | elasticity | en |
dc.subject | mathematics, applied | en |
dc.title | An elementary nonlinear beam theory with finite buckling deformation properties | en |
dc.title.serial | Siam Journal on Applied Mathematics | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- s0036139996309138.pdf
- Size:
- 254.65 KB
- Format:
- Adobe Portable Document Format
- Description:
- Main article