Genetically Encoded Self-Assembly of Large Amyloid Fibers
dc.contributor | Virginia Tech. Department of Biological Systems Engineering | en |
dc.contributor.author | Ridgley, Devin M. | en |
dc.contributor.author | Freedman, Benjamin G. | en |
dc.contributor.author | Lee, Parker W. | en |
dc.contributor.author | Barone, Justin R. | en |
dc.contributor.department | Biological Systems Engineering | en |
dc.date.accessed | 2015-04-17 | en |
dc.date.accessioned | 2015-04-20T21:22:16Z | en |
dc.date.available | 2015-04-20T21:22:16Z | en |
dc.date.issued | 2014-01-14 | en |
dc.description.abstract | “Functional” amyloids are found throughout nature as robust materials. We have discovered that “template” and “adder” proteins cooperatively self-assemble into micrometer-sized amyloid fibers with a controllable, hierarchical structure. Here, Escherichia coli is genetically engineered to express a template protein, Gd20, that can initiate self-assembly of large amyloid fibrils and fibers. Through atomic force microscopy (AFM) we found that expression of Gd20 produces large amyloid fibrils of 490 nm diameter and 2–15 _m length. Addition of an extracellular adder protein, myoglobin, continues self-assembly to form amyloid tapes with widths of [similar]7.5 _m, heights of [similar]400 nm, and lengths exceeding 100 _m. Without myoglobin the amyloid fibrils are metastable over time. When myoglobin is present, the amyloid fiber continues self-assembling to a width of [similar]18 _m and height of [similar]1 _m. Experimental results demonstrate that large amyloid fibers with a tailored stiffness and morphology can be engineered at the DNA level, spanning four orders of magnitude. | en |
dc.description.notes | Supplementary information is included in a separate file | en |
dc.description.sponsorship | National Science Foundation (U.S.) - NSF-CMMI-0856262 | en |
dc.description.sponsorship | Virginia Tech. College of Agriculture and Life Sciences. Biodesign and Bioprocessing Research Center | en |
dc.description.sponsorship | U.S. Department of Agriculture | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Ridgley, D. M., Freedman, B. G., Lee, P. W., & Barone, J. R. (2014). Genetically encoded self-assembly of large amyloid fibers. Biomaterials Science, 2(4), 560-566. doi: 10.1039/C3BM60223K | en |
dc.identifier.doi | https://doi.org/10.1039/C3BM60223K | en |
dc.identifier.issn | 2047-4830 | en |
dc.identifier.uri | http://hdl.handle.net/10919/51710 | en |
dc.identifier.url | http://pubs.rsc.org/en/content/articlelanding/2014/bm/c3bm60223k | en |
dc.language.iso | en | en |
dc.publisher | The Royal Society of Chemistry | en |
dc.rights | Creative Commons Attribution-NonCommercial 3.0 Unported | en |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/3.0/ | en |
dc.subject | Amyloids | en |
dc.subject | Fourier-transform infrared (FT-IR) spectroscopy | en |
dc.subject | Gd20 plasmid expression | en |
dc.subject | Genetics | en |
dc.title | Genetically Encoded Self-Assembly of Large Amyloid Fibers | en |
dc.title.serial | Biomaterials Science | en |
dc.type | Article - Refereed | en |
dc.type | Dataset | en |
dc.type.dcmitype | Text | en |
dc.type.dcmitype | Dataset | en |