The Abridgment and Relaxation Time for a Linear Multi-Scale Model Based on Multiple Site Phosphorylation

dc.contributor.authorWang, Shuoen
dc.contributor.authorCao, Yangen
dc.contributor.departmentComputer Scienceen
dc.date.accessioned2018-09-24T14:37:09Zen
dc.date.available2018-09-24T14:37:09Zen
dc.date.issued2015-08-11en
dc.description.abstractRandom effect in cellular systems is an important topic in systems biology and often simulated with Gillespie’s stochastic simulation algorithm (SSA). Abridgment refers to model reduction that approximates a group of reactions by a smaller group with fewer species and reactions. This paper presents a theoretical analysis, based on comparison of the first exit time, for the abridgment on a linear chain reaction model motivated by systems with multiple phosphorylation sites. The analysis shows that if the relaxation time of the fast subsystem is much smaller than the mean firing time of the slow reactions, the abridgment can be applied with little error. This analysis is further verified with numerical experiments for models of bistable switch and oscillations in which linear chain system plays a critical role.en
dc.description.versionPublished versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1371/journal.pone.0133295en
dc.identifier.eissn1932-6203en
dc.identifier.issue8en
dc.identifier.othere0133295en
dc.identifier.pmid26263559en
dc.identifier.urihttp://hdl.handle.net/10919/85118en
dc.identifier.volume10en
dc.language.isoenen
dc.publisherPLOSen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.titleThe Abridgment and Relaxation Time for a Linear Multi-Scale Model Based on Multiple Site Phosphorylationen
dc.title.serialPLOS ONEen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
journal.pone.0133295.PDF
Size:
837.32 KB
Format:
Adobe Portable Document Format
Description: