VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

Minimal Parameter Homotopies for the L2 Optimal Model Order Reduction Problem

dc.contributor.authorYuzhen, Geen
dc.contributor.authorCollins, Emmanuel G.en
dc.contributor.authorWatson, Layne T.en
dc.contributor.authorDavis, L. D.en
dc.contributor.departmentComputer Scienceen
dc.date.accessioned2013-06-19T14:36:57Zen
dc.date.available2013-06-19T14:36:57Zen
dc.date.issued1992en
dc.description.abstractThe problem of finding a reduced order model, optimal in the L2 sense, to a given system model is a fundamental one in control system analysis and design. The problem is very difficult without the global convergence of homotopy methods, and a number of homotopy based approaches have been proposed. The issues are the number of degrees of freedom, the well posedness of the finite dimensional optimization problem, and the numerical robustness of the resulting homotopy algorithm. Homotopy algorithms based on several formulations are developed and compared here. The main conclusions are that dimensionality is inversely related to numerical well conditioning and algorithmic efficiency is inversely related to robustness of the algorithm.en
dc.format.mimetypeapplication/pdfen
dc.identifierhttp://eprints.cs.vt.edu/archive/00000316/en
dc.identifier.sourceurlhttp://eprints.cs.vt.edu/archive/00000316/01/TR-92-36.pdfen
dc.identifier.trnumberTR-92-36en
dc.identifier.urihttp://hdl.handle.net/10919/19764en
dc.language.isoenen
dc.publisherDepartment of Computer Science, Virginia Polytechnic Institute & State Universityen
dc.relation.ispartofHistorical Collection(Till Dec 2001)en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.titleMinimal Parameter Homotopies for the L2 Optimal Model Order Reduction Problemen
dc.typeTechnical reporten
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR-92-36.pdf
Size:
1.28 MB
Format:
Adobe Portable Document Format