VTechWorks staff will be away for the winter holidays until January 5, 2026, and will respond to requests at that time.
 

Spatial Intracranial Pressure Fields Driven by Blast Overpressure in Rats

Files

TR Number

Date

2024-10-01

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Abstract

Free-field blast exposure imparts a complex, dynamic response within brain tissue that can trigger a cascade of lasting neurological deficits. Full body mechanical and physiological factors are known to influence the body's adaptation to this seemingly instantaneous insult, making it difficult to accurately pinpoint the brain injury mechanisms. This study examined the intracranial pressure (ICP) profile characteristics in a rat model as a function of blast overpressure magnitude and brain location. Metrics such as peak rate of change of pressure, peak pressure, rise time, and ICP frequency response were found to vary spatially throughout the brain, independent of blast magnitude, emphasizing unique spatial pressure fields as a primary biomechanical component to blast injury. This work discusses the ICP characteristics and considerations for finite element models, in vitro models, and translational in vivo models to improve understanding of biomechanics during primary blast exposure.

Description

Keywords

Intracranial pressure, Blast-induced traumatic brain injury, Injury characterization, In vivo, Biomechanics

Citation