Zero-voltage-switched multi-resonant converters including the buck and forward type
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
A multi-resonant-switching network that operates under switching conditions that are favorable to both the active switch and the diode that constitute the switch. In a zero-current multi-resonant switch, the resonant circuit is formed in a T-network with resonant inductors in series with the switching devices. In a zero-voltage multi-resonant switch, the resonant circuit is formed in a .pi.-network with resonant capacitors connected in parallel with the switch. In this way, the two networks are dual. During operation of a multi-resonant converter, a multi-resonant switches forms three different resonant circuits depending on whether the active switch and diode are open or closed. This results in operation of the converter with three different resonant stages in one cycle of operation. In practicing the present invention, certain rules are applied to derive a ZVS-MRC from a PWM converter. In particular, one resonant capacitor is placed in parallel with the active switch, which may be either uni-directional or bi-directional, another resonant capacitor is placed in parallel with the rectifying diode, and an inductor is inserted in the loop containing the switch and the diode. This loop can also contain voltage sources and filter or blocking capacitors. Improvement in the operation of ZVS-MRCs is obtained with synchronous rectification which is achieved by replacing rectifying diodes in a DC/DC converter with active devices, called synchronous rectifiers.