On the Riemann–Hilbert problem for the one dimensional Schrödinger equation
dc.contributor | Virginia Tech | en |
dc.contributor.author | Aktosun, T. | en |
dc.contributor.author | Klaus, Martin | en |
dc.contributor.author | van der Mee, Cornelis | en |
dc.contributor.department | Mathematics | en |
dc.date.accessed | 2014-03-20 | en |
dc.date.accessioned | 2014-04-09T18:12:25Z | en |
dc.date.available | 2014-04-09T18:12:25Z | en |
dc.date.issued | 1993-07 | en |
dc.description.abstract | A matrix Riemann-Hilbert problem associated with the one-dimensional Schrodinger equation is considered, and the existence and uniqueness of its solutions are studied. The solution of this Riemann-Hilbert problem yields the solution of the inverse scattering problem for a larger class of potentials than the usual Faddeev class. Some examples of explicit solutions of the Riemann-Hilbert problem are given, and the connection with ambiguities in the inverse scattering problem is established. | en |
dc.description.sponsorship | NSF DMS-9096268, DMS-9217627 | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Aktosun, T.; Klaus, M.; Vandermee, C., "On the Riemann–Hilbert problem for the one dimensional Schrödinger equation," J. Math. Phys. 34, 2651 (1993); http://dx.doi.org/10.1063/1.530089 | en |
dc.identifier.doi | https://doi.org/10.1063/1.530089 | en |
dc.identifier.issn | 0022-2488 | en |
dc.identifier.uri | http://hdl.handle.net/10919/47073 | en |
dc.identifier.url | http://scitation.aip.org/content/aip/journal/jmp/34/7/10.1063/1.530089 | en |
dc.language.iso | en | en |
dc.publisher | AIP Publishing | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | inverse scattering | en |
dc.subject | line | en |
dc.title | On the Riemann–Hilbert problem for the one dimensional Schrödinger equation | en |
dc.title.serial | Journal of Mathematical Physics | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 1.530089.pdf
- Size:
- 2.5 MB
- Format:
- Adobe Portable Document Format
- Description:
- Main article