The Poset Cover Problem

dc.contributor.authorHeath, Lenwood S.en
dc.contributor.authorNema, Ajit Kumaren
dc.contributor.departmentComputer Scienceen
dc.date.accessioned2013-06-19T14:35:41Zen
dc.date.available2013-06-19T14:35:41Zen
dc.date.issued2012en
dc.description.abstractA partial order or poset P = (X,<) on a (finite) base set X determines the set L(P) of linear extensions of P. The problem of computing, for a poset P, the cardinality of L(P) is #P-complete. A set {P1, P2, . . . , Pk} of posets on X covers the set of linear orders that is the union of the L(Pi). Given linear orders L1,L2, . . . ,Lm on X, the Poset Cover problem is to determine the smallest number of posets that cover {L1,L2, . . . ,Lm}. Here, we show that the decision version of this problem is NP- complete. On the positive side, we explore the use of cover relations for finding posets that cover a set of linear orders and present a polynomial-time algorithm to find a partial poset cover.en
dc.format.mimetypeext/plainen
dc.identifierhttp://eprints.cs.vt.edu/archive/00001204/en
dc.identifier.sourceurlhttp://eprints.cs.vt.edu/archive/00001204/01/TR-12-17.txten
dc.identifier.trnumberTR-12-17en
dc.identifier.urihttp://hdl.handle.net/10919/19491en
dc.language.isoenen
dc.publisherDepartment of Computer Science, Virginia Polytechnic Institute & State Universityen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectAlgorithmsen
dc.subjectData structuresen
dc.titleThe Poset Cover Problemen
dc.typeTechnical reporten
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Name:
TR-12-17.txt
Size:
94 B
Format:
Plain Text