The Poset Cover Problem
| dc.contributor.author | Heath, Lenwood S. | en |
| dc.contributor.author | Nema, Ajit Kumar | en |
| dc.contributor.department | Computer Science | en |
| dc.date.accessioned | 2013-06-19T14:35:41Z | en |
| dc.date.available | 2013-06-19T14:35:41Z | en |
| dc.date.issued | 2012 | en |
| dc.description.abstract | A partial order or poset P = (X,<) on a (finite) base set X determines the set L(P) of linear extensions of P. The problem of computing, for a poset P, the cardinality of L(P) is #P-complete. A set {P1, P2, . . . , Pk} of posets on X covers the set of linear orders that is the union of the L(Pi). Given linear orders L1,L2, . . . ,Lm on X, the Poset Cover problem is to determine the smallest number of posets that cover {L1,L2, . . . ,Lm}. Here, we show that the decision version of this problem is NP- complete. On the positive side, we explore the use of cover relations for finding posets that cover a set of linear orders and present a polynomial-time algorithm to find a partial poset cover. | en |
| dc.format.mimetype | ext/plain | en |
| dc.identifier | http://eprints.cs.vt.edu/archive/00001204/ | en |
| dc.identifier.sourceurl | http://eprints.cs.vt.edu/archive/00001204/01/TR-12-17.txt | en |
| dc.identifier.trnumber | TR-12-17 | en |
| dc.identifier.uri | http://hdl.handle.net/10919/19491 | en |
| dc.language.iso | en | en |
| dc.publisher | Department of Computer Science, Virginia Polytechnic Institute & State University | en |
| dc.rights | In Copyright | en |
| dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
| dc.subject | Algorithms | en |
| dc.subject | Data structures | en |
| dc.title | The Poset Cover Problem | en |
| dc.type | Technical report | en |
| dc.type.dcmitype | Text | en |
Files
Original bundle
1 - 1 of 1