Creep deformation of a soft magnetic iron-cobalt alloy

dc.contributorVirginia Tech. Engineering Science and Mechanics Departmenten
dc.contributorAir Force Research Laboratory. Propulsion Directorateen
dc.contributorAir Force Research Laboratory. Materials Directorateen
dc.contributor.authorFingers, Richard T.en
dc.contributor.authorCoate, Jack E.en
dc.contributor.authorDowling, Norman E.en
dc.contributor.departmentBiomedical Engineering and Mechanicsen
dc.description.abstractThe U.S. Air Force is in the process of developing magnetic bearings, as well as an aircraft integrated power unit and an internal starter/generator for main propulsion engines. These developments are the driving force for the new emphasis on the development of high saturation, low loss magnets capable of maintaining structural integrity in high stress and high temperature environments. It is this combination of desired material characteristics that is the motivation of this effort to measure, model, and predict the creep behavior of such advanced magnetic materials. Hiperco(R) Alloy 50HS, manufactured by Carpenter Technology Corporation, is one of the leading candidates for these applications. Material specimens were subjected to a battery of mechanical tests in order to study and characterize their behaviors. Tensile tests provided stress versus strain behaviors that clearly indicated: a yield point, a heterogeneous deformation described as Luders elongation, the Portevin-LeChatelier effect at elevated temperatures, and most often a section of homogeneous deformation that concluded with necking and fracture. Creep testing indicated three distinct types of behavior. Two types resembled a traditional response with primary, secondary, and tertiary stages; while the third type can be characterized by an abrupt increase in strain rate that acts as a transition from one steady-state behavior to another. The relationships between the tensile and creep responses are discussed. Analyses of the mechanical behavior include double linear regression of empirically modeled data, and constant strain rate testing to bridge the tensile and creep test parameters. (C) 1999 American Institute of Physics. [S0021-8979(99)77908-9].en
dc.format.extent4 pagesen
dc.identifier.citationFingers, R. T., Coate, J. E., Dowling, N. E. (1999). Creep deformation of a soft magnetic iron-cobalt alloy. Journal of Applied Physics, 85(8), 6037-6039. doi: 10.1063/1.369074en
dc.publisherAmerican Institute of Physicsen
dc.rightsIn Copyrighten
dc.subjectMagnetic materialsen
dc.subjectMaterials behavioren
dc.subjectMaterials propertiesen
dc.subjectTesting proceduresen
dc.titleCreep deformation of a soft magnetic iron-cobalt alloyen
dc.title.serialJournal of Applied Physicsen
dc.typeArticle - Refereeden


Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
442.84 KB
Adobe Portable Document Format