Edge-Packing in Planar Graphs
dc.contributor.author | Heath, Lenwood S. | en |
dc.contributor.author | Vergara, John Paul C. | en |
dc.contributor.department | Computer Science | en |
dc.date.accessioned | 2013-06-19T14:37:18Z | en |
dc.date.available | 2013-06-19T14:37:18Z | en |
dc.date.issued | 1995-10-01 | en |
dc.description.abstract | Maximum G Edge-Packing (EPack-sub G) is the problem of finding the maximum number of edge-disjoint isomorphic copies of a fixed guest graph G in a host graph H. This paper investigates the computational complexity of edge-packing for planar guests and planar hosts. Edge-packing is solvable in polynomial time when both G and H are either a 3-cycle or a k-star (graphs isomorphic to K(sub 1,k). Edge-packing is NP-complete when H is planar and G is either a cycle or a tree with greater than or equal to 3 edges. A strategy for developing polynomial-time approximation algorithms for planar hosts is exemplified by a linear-time approximation algorithm that finds a k-star edge-packing of size at least 1/2 optimal. | en |
dc.format.mimetype | application/postscript | en |
dc.identifier | http://eprints.cs.vt.edu/archive/00000433/ | en |
dc.identifier.sourceurl | http://eprints.cs.vt.edu/archive/00000433/01/TR-95-18.ps | en |
dc.identifier.trnumber | TR-95-18 | en |
dc.identifier.uri | http://hdl.handle.net/10919/19888 | en |
dc.language.iso | en | en |
dc.publisher | Department of Computer Science, Virginia Polytechnic Institute & State University | en |
dc.relation.ispartof | Historical Collection(Till Dec 2001) | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.title | Edge-Packing in Planar Graphs | en |
dc.type | Technical report | en |
dc.type.dcmitype | Text | en |
Files
Original bundle
1 - 1 of 1