Identifiability of parameters in mathematical models of SARS-CoV-2 infections in humans
dc.contributor.author | Ciupe, Stanca M. | en |
dc.contributor.author | Tuncer, Necibe | en |
dc.date.accessioned | 2022-10-14T13:41:19Z | en |
dc.date.available | 2022-10-14T13:41:19Z | en |
dc.date.issued | 2022-08-27 | en |
dc.description.abstract | Determining accurate estimates for the characteristics of the severe acute respiratory syndrome coronavirus 2 in the upper and lower respiratory tracts, by fitting mathematical models to data, is made difficult by the lack of measurements early in the infection. To determine the sensitivity of the parameter estimates to the noise in the data, we developed a novel two-patch within-host mathematical model that considered the infection of both respiratory tracts and assumed that the viral load in the lower respiratory tract decays in a density dependent manner and investigated its ability to match population level data. We proposed several approaches that can improve practical identifiability of parameters, including an optimal experimental approach, and found that availability of viral data early in the infection is of essence for improving the accuracy of the estimates. Our findings can be useful for designing interventions. | en |
dc.description.notes | SMC acknowledges support from National Science Foundation Grants No. DMS-1813011 and DMS-2051820 and by the Virginia Tech Center for Emerging, Zoonotic, and Arthropod-borne Pathogens (CeZAP) seed Grant. NT acknowledges partial support from National Science Foundation Grant DMS-1951626. | en |
dc.description.sponsorship | National Science Foundation [DMS-1951626, DMS-1813011, DMS-2051820]; Virginia Tech Center for Emerging, Zoonotic, and Arthropod-borne Pathogens (CeZAP) seed Grant | en |
dc.description.version | Published version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1038/s41598-022-18683-x | en |
dc.identifier.issn | 2045-2322 | en |
dc.identifier.issue | 1 | en |
dc.identifier.other | 14637 | en |
dc.identifier.pmid | 36030320 | en |
dc.identifier.uri | http://hdl.handle.net/10919/112163 | en |
dc.identifier.volume | 12 | en |
dc.language.iso | en | en |
dc.publisher | Nature Portfolio | en |
dc.rights | Creative Commons Attribution 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.title | Identifiability of parameters in mathematical models of SARS-CoV-2 infections in humans | en |
dc.title.serial | Scientific Reports | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- s41598-022-18683-x.pdf
- Size:
- 4.3 MB
- Format:
- Adobe Portable Document Format
- Description:
- Published version