MeCP2 Deficiency Leads to Loss of Glial Kir4.1

Abstract

Rett syndrome is a devastating neurodevelopmental disorder that affects 1 in 10,000–25,000 females. Mutations in methyl-CpG-binding protein 2 (MeCP2), a transcriptional regulator, are responsible for >95% of RTT cases. Recent work has shown that astrocytes contribute significantly to the disorder, although their contribution to this disease is not known. Here, we demonstrate that the critical astrocyte K⁺ channel Kir4.1 is a novel molecular target of MeCP2. MeCP2 deficiency leads to decreased Kcnj10/Kir4.1 mRNA levels, protein expression, and currents. These findings provide novel mechanistic insight and begin to elucidate the role of astrocytes in this disorder.

Description

Keywords

Epigenetic regulation, Kcnj10, MeCP2, Rett syndrome

Citation