A feasibility study to use machine learning as an inversion algorithm for aerosol profile and property retrieval from multi-axis differential absorption spectroscopy measurements
dc.contributor.author | Dong, Yun | en |
dc.contributor.author | Spinei, Elena | en |
dc.contributor.author | Karpatne, Anuj | en |
dc.contributor.department | Electrical and Computer Engineering | en |
dc.contributor.department | Computer Science | en |
dc.date.accessioned | 2021-01-29T15:24:05Z | en |
dc.date.available | 2021-01-29T15:24:05Z | en |
dc.date.issued | 2020-10-16 | en |
dc.description.abstract | In this study, we explore a new approach based on machine learning (ML) for deriving aerosol extinction coefficient profiles, single-scattering albedo and asymmetry parameter at 360 nm from a single multi-axis differential optical absorption spectroscopy (MAX-DOAS) sky scan. Our method relies on a multi-output sequence-to-sequence model combining convolutional neural networks (CNNs) for feature extraction and long short-term memory networks (LSTMs) for profile prediction. The model was trained and evaluated using data simulated by Vector Linearized Discrete Ordinate Radiative Transfer (VLIDORT) v2.7, which contains 1 459 200 unique mappings. From the simulations, 75 % were randomly selected for training and the remaining 25 % for validation. The overall error of estimated aerosol properties (1) for total aerosol optical depth (AOD) is -1.4 +/- 10.1 %, (2) for the single-scattering albedo is 0.1 +/- 3.6 %, and (3) for the asymmetry factor is -0.1 +/- 2.1 %. The resulting model is capable of retrieving aerosol extinction coefficient profiles with degrading accuracy as a function of height. The uncertainty due to the randomness in ML training is also discussed. | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.5194/amt-13-5537-2020 | en |
dc.identifier.eissn | 1867-8548 | en |
dc.identifier.issn | 1867-1381 | en |
dc.identifier.issue | 10 | en |
dc.identifier.uri | http://hdl.handle.net/10919/102128 | en |
dc.identifier.volume | 13 | en |
dc.language.iso | en | en |
dc.rights | Creative Commons Attribution 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.title | A feasibility study to use machine learning as an inversion algorithm for aerosol profile and property retrieval from multi-axis differential absorption spectroscopy measurements | en |
dc.title.serial | Atmospheric Measurement Techniques | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
dc.type.dcmitype | StillImage | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- amt-13-5537-2020.pdf
- Size:
- 1.72 MB
- Format:
- Adobe Portable Document Format
- Description: