Evaluating oil and gas contributions to ambient nonmethane hydrocarbon mixing ratios and ozone-related metrics in the Colorado Front Range

Abstract

Recently, oil and natural gas (O&NG) production activities in the Denver-Julesburg Basin have expanded rapidly. Associated nonmethane hydrocarbon (NMHC) emissions contribute to photochemical formation of ground-level ozone and include benzene as well as other hazardous air pollutants. Using positive matrix factorization (PMF) and chemical mass balance (CMB) methods, we estimate how much O&NG activities and other sources contribute to morning NMHC mixing ratios measured from 2013 to mid-2016 at a site in Platteville, CO, in the Denver-Julesburg Basin, and at a contrasting site in downtown Denver. A novel adjoint sensitivity analysis method is then used to estimate corresponding contributions to ozone and ozone-linked mortality in the Denver region. Average 6-9 am NMHC mixing ratios in Platteville were seven times higher than those in Denver in 2013 but four times higher in 2016. CMB estimates that O&NG activities contributed to the Platteville (Denver) site an average of 96% (56%) of NMHC on a carbon basis while PMF indicated 92% (33%). Average vehicle-related contributions of NMHC are estimated as 41% by CMB and 53% by PMF in Denver. Estimates of the fractional contribution to potential ozone and ozone-linked mortality from O&NG activities are smaller while those from vehicles are larger than the NMHC contributions. CMB (PMF) indicate that greater than 78% (40%) of annual average benzene in Denver is attributable to vehicle emissions while greater than 75% (67%) of benzene in Platteville is attributable to O&NG activities.

Description

Keywords

Oil and natural gas, Nonmethane hydrocarbon, Ground-level ozone, Premature mortality, Source apportionment, Adjoint sensitivity analysis

Citation