Nonparametric distributed learning under general designs

dc.contributor.authorLiu, Meimeien
dc.contributor.authorShang, Zuofengen
dc.contributor.authorCheng, Guangen
dc.contributor.departmentStatisticsen
dc.date.accessioned2021-01-12T15:10:19Zen
dc.date.available2021-01-12T15:10:19Zen
dc.date.issued2020-08-21en
dc.description.abstractThis paper focuses on the distributed learning in nonparametric regression framework. With sufficient computational resources, the efficiency of distributed algorithms improves as the number of machines increases. We aim to analyze how the number of machines affects statistical optimality. We establish an upper bound for the number of machines to achieve statistical minimax in two settings: nonparametric estimation and hypothesis testing. Our framework is general compared with existing work. We build a unified frame in distributed inference for various regression problems, including thin-plate splines and additive regression under random design: univariate, multivariate, and diverging-dimensional designs. The main tool to achieve this goal is a tight bound of an empirical process by introducing the Green function for equivalent kernels. Thorough numerical studies back theoretical findings.en
dc.description.notesThis work was completed while Cheng was a member of Institute for Advanced Study, Princeton in the fall of 2019. Cheng would like to acknowledge hospitality of IAS, and also financial support from NSF DMS-1712907, DMS-1811812, DMS-1821183, Office of Naval Research, (ONR N00014-18-2759) and Adobe Data Science Fund.en
dc.description.sponsorshipNSFNational Science Foundation (NSF) [DMS-1712907, DMS-1811812, DMS-1821183]; Office of Naval ResearchOffice of Naval Research [ONR N00014-18-2759]; Adobe Data Science Funden
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1214/20-EJS1733en
dc.identifier.issn1935-7524en
dc.identifier.issue2en
dc.identifier.urihttp://hdl.handle.net/10919/101855en
dc.identifier.volume14en
dc.language.isoenen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectComputational limiten
dc.subjectdivide and conqueren
dc.subjectkernel ridge regressionen
dc.subjectminimax optimalityen
dc.subjectnonparametric testingen
dc.titleNonparametric distributed learning under general designsen
dc.title.serialElectronic Journal of Statisticsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.dcmitypeStillImageen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
euclid.ejs.1597975224.pdf
Size:
471.81 KB
Format:
Adobe Portable Document Format
Description: