Compositionally Graded Multilayer Ceramic Capacitors
dc.contributor.author | Song, Hyun-Cheol | en |
dc.contributor.author | Zhou, Jie E. | en |
dc.contributor.author | Maurya, Deepam | en |
dc.contributor.author | Yan, Yongke | en |
dc.contributor.author | Wang, Yu U. | en |
dc.contributor.author | Priya, Shashank | en |
dc.date.accessioned | 2019-01-03T15:49:23Z | en |
dc.date.available | 2019-01-03T15:49:23Z | en |
dc.date.issued | 2017-09-27 | en |
dc.description.abstract | Multilayer ceramic capacitors (MLCC) are widely used in consumer electronics. Here, we provide a transformative method for achieving high dielectric response and tunability over a wide temperature range through design of compositionally graded multilayer (CGML) architecture. Compositionally graded MLCCs were found to exhibit enhanced dielectric tunability (70%) along with small dielectric losses (< 2.5%) over the required temperature ranges specified in the standard industrial classifications. The compositional grading resulted in generation of internal bias field which enhanced the tunability due to increased nonlinearity. The electric field tunability of MLCCs provides an important avenue for design of miniature filters and power converters. | en |
dc.description.notes | Financial support from DARPA MATRIX Program is acknowledged. The parallel computer simulations were performed on XSEDE supercomputers. D.M. and S.P. acknowledge the financial support from Office of basic energy science, department of energy (DE-FG02-06ER46290). Y.Y. acknowledges financial support from office of naval research through grant number (N00014-16-1-3043). Authors thanks AVX Corp. for the measurement on MLCC. | en |
dc.description.sponsorship | DARPA MATRIX Program; Office of basic energy science, department of energy [DE-FG02-06ER46290]; office of naval research [N00014-16-1-3043] | en |
dc.format.extent | 12 | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1038/s41598-017-12402-7 | en |
dc.identifier.issn | 2045-2322 | en |
dc.identifier.other | 12353 | en |
dc.identifier.pmid | 28955052 | en |
dc.identifier.uri | http://hdl.handle.net/10919/86588 | en |
dc.identifier.volume | 7 | en |
dc.language.iso | en_US | en |
dc.publisher | Springer Nature | en |
dc.rights | Creative Commons Attribution 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | effective pyroelectric coefficients | en |
dc.subject | ferroelectric domain formation | en |
dc.subject | high-temperature | en |
dc.subject | computer-simulation | en |
dc.subject | 0.9batio(3)-0.1(bi0.5na0.5)tio3 ceramics | en |
dc.subject | dielectric-properties | en |
dc.subject | behavior | en |
dc.subject | field | en |
dc.subject | batio3 | en |
dc.subject | films | en |
dc.title | Compositionally Graded Multilayer Ceramic Capacitors | en |
dc.title.serial | Scientific Reports | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- s41598-017-12402-7.pdf
- Size:
- 3.76 MB
- Format:
- Adobe Portable Document Format
- Description: