Anoxia begets anoxia: A positive feedback to the deoxygenation of temperate lakes

dc.contributor.authorLewis, Abigail S. L.en
dc.contributor.authorLau, Maximilian P.en
dc.contributor.authorJane, Stephen F.en
dc.contributor.authorRose, Kevin C.en
dc.contributor.authorBe'eri-Shlevin, Yaronen
dc.contributor.authorBurnet, Sarah H.en
dc.contributor.authorClayer, Françoisen
dc.contributor.authorFeuchtmayr, Heidrunen
dc.contributor.authorGrossart, Hans-Peteren
dc.contributor.authorHoward, Dexter W.en
dc.contributor.authorMariash, Heatheren
dc.contributor.authorDelgado Martin, Jordien
dc.contributor.authorNorth, Rebecca L.en
dc.contributor.authorOleksy, Isabellaen
dc.contributor.authorPilla, Rachel M.en
dc.contributor.authorSmagula, Amy P.en
dc.contributor.authorSommaruga, Rubenen
dc.contributor.authorSteiner, Sara E.en
dc.contributor.authorVerburg, Pieten
dc.contributor.authorWain, Danielleen
dc.contributor.authorWeyhenmeyer, Gesa A.en
dc.contributor.authorCarey, Cayelan C.en
dc.date.accessioned2024-02-20T14:26:08Zen
dc.date.available2024-02-20T14:26:08Zen
dc.date.issued2023en
dc.description.abstractDeclining oxygen concentrations in the deep waters of lakes worldwide pose a pressing environmental and societal challenge. Existing theory suggests that low deep-water dissolved oxygen (DO) concentrations could trigger a positive feedback through which anoxia (i.e., very low DO) during a given summer begets increasingly severe occurrences of anoxia in following summers. Specifically, anoxic conditions can promote nutrient release from sediments, thereby stimulating phytoplankton growth, and subsequent phytoplankton decomposition can fuel heterotrophic respiration, resulting in increased spatial extent and duration of anoxia. However, while the individual relationships in this feedback are well established, to our knowledge, there has not been a systematic analysis within or across lakes that simultaneously demonstrates all of the mechanisms necessary to produce a positive feedback that reinforces anoxia. Here, we compiled data from 656 widespread temperate lakes and reservoirs to analyze the proposed anoxia begets anoxia feedback. Lakes in the dataset span a broad range of surface area (1–126,909 ha), maximum depth (6–370 m), and morphometry, with a median time-series duration of 30 years at each lake. Using linear mixed models, we found support for each of the positive feedback relationships between anoxia, phosphorus concentrations, chlorophyll a concentrations, and oxygen demand across the 656-lake dataset. Likewise, we found further support for these relationships by analyzing time-series data from individual lakes. Our results indicate that the strength of these feedback relationships may vary with lake-specific characteristics: For example, we found that surface phosphorus concentrations were more positively associated with chlorophyll a in high-phosphorus lakes, and oxygen demand had a stronger influence on the extent of anoxia in deep lakes. Taken together, these results support the existence of a positive feedback that could magnify the effects of climate change and other anthropogenic pressures driving the development of anoxia in lakes around the world.en
dc.description.sponsorshipData collection and manuscript development for this project have been supported by numerous grants. Abigail S. L. Lewis is supported by the U.S. National Science Foundation (NSF) graduate research fellowship program (DGE-1840995), NSF grant 1753639, the Institute for Critical Technology and Applied Science (ICTAS), and the College of Science Roundtable at Virginia Tech. Cayelan C. Carey receives support from NSF grants 1753639, 1933016, and 1737424. Stephen F. Jane is supported by the Cornell Atkinson Center for Sustainability. Rebecca L. North acknowledges support from the Missouri Department of Natural Resources, which funds the Missouri Statewide Lake Assessment Program (SLAP) coordinated by the University of Missouri (MU) Limnology Laboratory. Hans-Peter Grossart receives support from the Leibniz Institute of Freshwater Biology and Inland Fisheries (IGB) and teams of scientists and technicians who run the Stechlin and Müggelsee long-term monitoring, as well as the German Research Foundation (DFG), which funds Project Pycnotrap (GR1540/37- 1). Rachel M. Pilla notes that this research was supported by the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Water Power Technologies Office, and Environmental Sciences Division at Oak Ridge National Laboratory (ORNL). ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC05-00OR22725. Kevin C. Rose acknowledges support from NSF grants 1754265 and 2048031. Ruben Sommaruga acknowledges support from the LTSER platform Tyrolean Alps (LTER-Austria). Gesa A. Weyhenmeyer received financial support for this study from the Swedish Research Council (VR; Grant No. 2020-03222) and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS; Grant No. 2020-01091). Piet Verburg acknowledges support from MBIE under grant number C01X2205. Jordi Delgado Martin acknowledges support from the EMALCSA Chair. Isabella Oleksy receives support from the NSF under grant EPS-2019528. Heidrun Feuchtmayr acknowledges support from the Natural Environmental Research Council award number NE/R016429/1 as part of the UK-SCaPE programme delivering National Capability. Many thanks to all of the funding sources that enabled this international lake analysis.en
dc.description.versionPublished versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.urihttps://hdl.handle.net/10919/118062en
dc.language.isoenen
dc.publisherWileyen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectair temperatureen
dc.subjectanoxiaen
dc.subjectchlorophyll aen
dc.subjectdissolved oxygenen
dc.subjectfeedbacken
dc.subjecthypolimnionen
dc.subjectlakeen
dc.subjectoxygen demanden
dc.subjectphosphorusen
dc.subjectresidence timeen
dc.titleAnoxia begets anoxia: A positive feedback to the deoxygenation of temperate lakesen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2023-Lewis-Anoxia begets anoxia.pdf
Size:
6.81 MB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Item-specific license agreed upon to submission
Description: