Dislocation-pipe diffusion in nitride superlattices observed in direct atomic resolution
dc.contributor.author | Garbrecht, Magnus | en |
dc.contributor.author | Saha, Bivas | en |
dc.contributor.author | Schroeder, Jeremy L. | en |
dc.contributor.author | Hultman, Lars | en |
dc.contributor.author | Sands, Timothy D. | en |
dc.contributor.department | Electrical and Computer Engineering | en |
dc.contributor.department | Materials Science and Engineering (MSE) | en |
dc.date.accessioned | 2019-01-09T17:29:48Z | en |
dc.date.available | 2019-01-09T17:29:48Z | en |
dc.date.issued | 2017-04-06 | en |
dc.description.abstract | Device failure from diffusion short circuits in microelectronic components occurs via thermally induced migration of atoms along high-diffusivity paths: dislocations, grain boundaries, and free surfaces. Even well-annealed single-grain metallic films contain dislocation densities of about 1014 m-2; hence dislocation-pipe diffusion (DPD) becomes a major contribution at working temperatures. While its theoretical concept was established already in the 1950s and its contribution is commonly measured using indirect tracer, spectroscopy, or electrical methods, no direct observation of DPD at the atomic level has been reported. We present atomically-resolved electron microscopy images of the onset and progression of diffusion along threading dislocations in sequentially annealed nitride metal/semiconductor superlattices, and show that this type of diffusion can be independent of concentration gradients in the system but governed by the reduction of strain fields in the lattice. | en |
dc.description.notes | The Knut and Alice Wallenberg (KAW) Foundation is acknowledged for the Electron Microscope Laboratory in Linkoping.M.G., J.L.S., and L.H.acknowledge financial support from the Swedish Research Council [RAC Frame Program (2011-6505), Project Grant 2013-4018, and Linnaeus Grant (LiLi-NFM)] as well as the Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University (Faculty Grant SFO-Mat-LiU 2009-00971).B.S.and T.D.S.acknowledge financial support from the National Science Foundation and U.S.Department of Energy (Award No.CBET-1048616).A.Friedman is acknowledged for assistance with SolidWorks. | en |
dc.description.sponsorship | Swedish Research Council [2013-4018, 2011-6505]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [SFO-Mat-LiU 2009-00971]; National Science Foundation; U.S.Department of Energy [CBET-1048616] | en |
dc.format.extent | 7 | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1038/srep46092 | en |
dc.identifier.issn | 2045-2322 | en |
dc.identifier.other | 46092 | en |
dc.identifier.pmid | 28382949 | en |
dc.identifier.uri | http://hdl.handle.net/10919/86648 | en |
dc.identifier.volume | 7 | en |
dc.language.iso | en | en |
dc.publisher | Springer Nature | en |
dc.rights | Creative Commons Attribution 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | thermal-stability | en |
dc.subject | metal/semiconductor superlattices | en |
dc.subject | barrier | en |
dc.subject | aluminum | en |
dc.subject | cores | en |
dc.subject | films | en |
dc.subject | tin | en |
dc.title | Dislocation-pipe diffusion in nitride superlattices observed in direct atomic resolution | en |
dc.title.serial | Scientific Reports | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
Files
Original bundle
1 - 1 of 1