In situ melt pool measurements for laser powder bed fusion using multi sensing and correlation analysis
dc.contributor.author | Wang, Rongxuan | en |
dc.contributor.author | Garcia, David | en |
dc.contributor.author | Kamath, Rakesh R. | en |
dc.contributor.author | Dou, Chaoran | en |
dc.contributor.author | Ma, Xiaohan | en |
dc.contributor.author | Shen, Bo | en |
dc.contributor.author | Choo, Hahn | en |
dc.contributor.author | Fezzaa, Kamel | en |
dc.contributor.author | Yu, Hang Z. | en |
dc.contributor.author | Kong, Zhenyu (James) | en |
dc.date.accessioned | 2022-10-18T13:13:12Z | en |
dc.date.available | 2022-10-18T13:13:12Z | en |
dc.date.issued | 2022-08-12 | en |
dc.description.abstract | Laser powder bed fusion is a promising technology for local deposition and microstructure control, but it suffers from defects such as delamination and porosity due to the lack of understanding of melt pool dynamics. To study the fundamental behavior of the melt pool, both geometric and thermal sensing with high spatial and temporal resolutions are necessary. This work applies and integrates three advanced sensing technologies: synchrotron X-ray imaging, high-speed IR camera, and high-spatial-resolution IR camera to characterize the evolution of the melt pool shape, keyhole, vapor plume, and thermal evolution in Ti-6Al-4V and 410 stainless steel spot melt cases. Aside from presenting the sensing capability, this paper develops an effective algorithm for high-speed X-ray imaging data to identify melt pool geometries accurately. Preprocessing methods are also implemented for the IR data to estimate the emissivity value and extrapolate the saturated pixels. Quantifications on boundary velocities, melt pool dimensions, thermal gradients, and cooling rates are performed, enabling future comprehensive melt pool dynamics and microstructure analysis. The study discovers a strong correlation between the thermal and X-ray data, demonstrating the feasibility of using relatively cheap IR cameras to predict features that currently can only be captured using costly synchrotron X-ray imaging. Such correlation can be used for future thermal-based melt pool control and model validation. | en |
dc.description.notes | Research reported in this publication was supported by the Office of Naval Research under Award Number N00014-18-1-2794<BOLD>.</BOLD> We would like to thank Alex Deriy from APS for assisting with the beamline experiments; Thomas Feldhausen from Oak Ridge National Lab for preparing the SS-410 samples; Scott Lancaster and Randall Waldron from Virginia Tech for assisting with the high-spatial IR fixture fabrication. | en |
dc.description.sponsorship | Office of Naval Research [N00014-18-1-2794] | en |
dc.description.version | Published version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1038/s41598-022-18096-w | en |
dc.identifier.issn | 2045-2322 | en |
dc.identifier.issue | 1 | en |
dc.identifier.other | 13716 | en |
dc.identifier.pmid | 35962031 | en |
dc.identifier.uri | http://hdl.handle.net/10919/112189 | en |
dc.identifier.volume | 12 | en |
dc.language.iso | en | en |
dc.publisher | Nature Portfolio | en |
dc.rights | Creative Commons Attribution 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | finite-element simulation | en |
dc.subject | phase-transformation | en |
dc.subject | heat-transfer | en |
dc.subject | microstructure | en |
dc.subject | dynamics | en |
dc.subject | temperature | en |
dc.subject | ti-6al-4v | en |
dc.subject | penetration | en |
dc.subject | morphology | en |
dc.subject | stress | en |
dc.title | In situ melt pool measurements for laser powder bed fusion using multi sensing and correlation analysis | en |
dc.title.serial | Scientific Reports | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- s41598-022-18096-w.pdf
- Size:
- 11.44 MB
- Format:
- Adobe Portable Document Format
- Description:
- Published version