Shifting stoichiometry: Long-term trends in stream-dissolved organic matter reveal altered C:N ratios due to history of atmospheric acid deposition

dc.contributor.authorRodriguez-Cardona, Bianca M.en
dc.contributor.authorWymore, Adam S.en
dc.contributor.authorArgerich, Albaen
dc.contributor.authorBarnes, Rebecca T.en
dc.contributor.authorBernal, Susanaen
dc.contributor.authorBrookshire, E. N. Jacken
dc.contributor.authorCoble, Ashley A.en
dc.contributor.authorDodds, Walter K.en
dc.contributor.authorFazekas, Hannah M.en
dc.contributor.authorHelton, Ashley M.en
dc.contributor.authorJohnes, Penny J.en
dc.contributor.authorJohnson, Sherri L.en
dc.contributor.authorJones, Jeremy B.en
dc.contributor.authorKaushal, Sujay S.en
dc.contributor.authorKortelainen, Pirkkoen
dc.contributor.authorLopez-Lloreda, Carlaen
dc.contributor.authorSpencer, Robert G. M.en
dc.contributor.authorMcDowell, William H.en
dc.date.accessioned2021-11-30T15:26:12Zen
dc.date.available2021-11-30T15:26:12Zen
dc.date.issued2021-10-27en
dc.description.abstractDissolved organic carbon (DOC) and nitrogen (DON) are important energy and nutrient sources for aquatic ecosystems. In many northern temperate, freshwater systems DOC has increased in the past 50 years. Less is known about how changes in DOC may vary across latitudes, and whether changes in DON track those of DOC. Here, we present long-term DOC and DON data from 74 streams distributed across seven sites in biomes ranging from the tropics to northern boreal forests with varying histories of atmospheric acid deposition. For each stream, we examined the temporal trends of DOC and DON concentrations and DOC:DON molar ratios. While some sites displayed consistent positive or negative trends in stream DOC and DON concentrations, changes in direction or magnitude were inconsistent at regional or local scales. DON trends did not always track those of DOC, though DOC:DON ratios increased over time for -30% of streams. Our results indicate that the dissolved organic matter (DOM) pool is experiencing fundamental changes due to the recovery from atmospheric acid deposition. Changes in DOC:DON stoichiometry point to a shifting energy-nutrient balance in many aquatic ecosystems. Sustained changes in the character of DOM can have major implications for stream metabolism, biogeochemical processes, food webs, and drinking water quality (including disinfection by-products). Understanding regional and global variation in DOC and DON concentrations is important for developing realistic models and watershed management protocols to effectively target mitigation efforts aimed at bringing DOM flux and nutrient enrichment under control.en
dc.description.notesNational Institute of Food and Agriculture, Grant/Award Number: 1016163, 1019522 and 1022291; Natural Environment Research Council, Grant/Award Number: NE/K010689/1; NSF EPSCoR, Grant/ Award Number: EPS-1929148; Division of Environmental Biology, Grant/ Award Number: 1545288 and 1556603; European Regional Development Fund, Grant/Award Number: RTI2018--094521-B-100 and RYC-2017-22643en
dc.description.sponsorshipNational Institute of Food and AgricultureUnited States Department of Agriculture (USDA)National Institute of Food and Agriculture [1016163, 1019522, 1022291]; Natural Environment Research CouncilUK Research & Innovation (UKRI)Natural Environment Research Council (NERC) [NE/K010689/1]; NSF EPSCoRNational Science Foundation (NSF)NSF - Office of the Director (OD) [EPS-1929148]; Division of Environmental BiologyNational Science Foundation (NSF)NSF - Directorate for Biological Sciences (BIO) [1545288, 1556603]; European Regional Development FundEuropean Commission [RTI2018-094521-B-100, RYC-2017-22643]en
dc.description.versionPublished versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1111/gcb.15965en
dc.identifier.eissn1365-2486en
dc.identifier.issn1354-1013en
dc.identifier.pmid34706120en
dc.identifier.urihttp://hdl.handle.net/10919/106776en
dc.language.isoenen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectatmospheric acid depositionen
dc.subjectC:N stoichiometryen
dc.subjectdissolved organic carbonen
dc.subjectdissolved organic matteren
dc.subjectdissolved organic nitrogenen
dc.subjectlong-term trendsen
dc.subjectstreamsen
dc.titleShifting stoichiometry: Long-term trends in stream-dissolved organic matter reveal altered C:N ratios due to history of atmospheric acid depositionen
dc.title.serialGlobal Change Biologyen
dc.typeArticle - Refereeden
dc.type.dcmitypetexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gcb.15965.pdf
Size:
1.06 MB
Format:
Adobe Portable Document Format
Description:
Published version