lociPARSE: A Locality-aware Invariant Point Attention Model for Scoring RNA 3D Structures
| dc.contributor.author | Tarafder, Sumit | en |
| dc.contributor.author | Bhattacharya, Debswapna | en |
| dc.date.accessioned | 2025-10-14T12:42:01Z | en |
| dc.date.available | 2025-10-14T12:42:01Z | en |
| dc.date.issued | 2024-11-11 | en |
| dc.description.abstract | A scoring function that can reliably assess the accuracy of a 3D RNA structural model in the absence of experimental structure is not only important for model evaluation and selection but also useful for scoring-guided conformational sampling. However, high-fidelity RNA scoring has proven to be difficult using conventional knowledge-based statistical potentials and currently available machine learning-based approaches. Here, we present lociPARSE, a locality-aware invariant point attention architecture for scoring RNA 3D structures. Unlike existing machine learning methods that estimate superposition-based root-mean-square deviation (RMSD), lociPARSE estimates Local Distance Difference Test (lDDT) scores capturing the accuracy of each nucleotide and its surrounding local atomic environment in a superposition-free manner, before aggregating information to predict global structural accuracy. Tested on multiple datasets including CASP15, lociPARSE significantly outperforms existing statistical potentials (rsRNASP, cgRNASP, DFIRE-RNA, and RASP) and machine learning methods (ARES and RNA3DCNN) across complementary assessment metrics. lociPARSE is freely available at https://github.com/Bhattacharya-Lab/lociPARSE. | en |
| dc.description.sponsorship | National Institute of General Medical Sciences [R35GM138146]; National Institute of General Medical Sciences [DBI2208679]; National Science Foundation | en |
| dc.format.mimetype | application/pdf | en |
| dc.identifier.doi | https://doi.org/10.1021/acs.jcim.4c01621 | en |
| dc.identifier.eissn | 1549-960X | en |
| dc.identifier.issn | 1549-9596 | en |
| dc.identifier.issue | 22 | en |
| dc.identifier.pmid | 39523843 | en |
| dc.identifier.uri | https://hdl.handle.net/10919/138170 | en |
| dc.identifier.volume | 64 | en |
| dc.language.iso | en | en |
| dc.publisher | American Chemical Society | en |
| dc.rights | Creative Commons Attribution 4.0 International | en |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
| dc.title | lociPARSE: A Locality-aware Invariant Point Attention Model for Scoring RNA 3D Structures | en |
| dc.title.serial | Journal of Chemical Information and Modeling | en |
| dc.type | Article - Refereed | en |
| dc.type.dcmitype | Text | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- TarafdrlociPARSE.pdf
- Size:
- 2.47 MB
- Format:
- Adobe Portable Document Format
- Description:
- Published version