Framework for Evaluating the Severity of Cybervulnerability of a Traffic Cabinet

TR Number
Journal Title
Journal ISSN
Volume Title
National Academy of Sciences

The increasing connectivity in transportation infrastructure is driving a need for additional security in transportation systems. For security decisions in a budget-constrained environment, the possible effect of a cyberattack must be numerically characterized. The size of an effect depends on the level of access and the vehicular demand on the intersections being controlled. This paper proposes a framework for better understanding of the levels of access and the effect that can be had in scenarios with varying demand. Simulations are performed on a simplistic corridor to provide numerical examples of the possible effects. The paper concludes that the possibility of some levels of cyberthreat may be acceptable in locations where traffic volumes would not be able to create an unmanageable queue. The more intimate levels of access can cause serious safety concerns by modifying the settings of the traffic controller in ways that encourage red-light running and accidents. The proposed framework can be used by transportation professionals and cybersecurity professionals to prioritize the actions to be taken to secure the infrastructure.