Continuity: A deterministic Byzantine fault tolerant asynchronous consensus algorithm

dc.contributor.authorArnold, Rachelen
dc.contributor.authorLongley, Daveen
dc.date.accessioned2021-11-30T15:26:12Zen
dc.date.available2021-11-30T15:26:12Zen
dc.date.issued2021-11-09en
dc.description.abstractIn 1985, Fischer, Lynch, and Patterson presented the FLP Impossibility Theorem which states that it is impossible for an asynchronous system to reach consensus if at least one node fails; asynchrony prevents distinguishing between process crashes and delays. Traditionally, asynchronous consensus algorithms implement protocol adaptations to handle delays and prevent indefinite runs (e.g. coordination protocols in the form of ordered rounds). In this paper, we present a deterministic Byzantine fault tolerant asynchronous consensus algorithm called Continuity. Within this system, processes do not begin by supporting a possible decision value. Instead, Continuity utilizes logical monotonicity to build an initial configuration that is necessarily univalent, thus eliminating the assumed initial conditions of the FLP Impossibility Theorem. As such, Continuity achieves consensus in a wait-free manner.en
dc.description.versionPublished versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1016/j.comnet.2021.108431en
dc.identifier.eissn1872-7069en
dc.identifier.issn1389-1286en
dc.identifier.other108431en
dc.identifier.urihttp://hdl.handle.net/10919/106774en
dc.identifier.volume199en
dc.language.isoenen
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en
dc.subjectFLPen
dc.subjectByzantine fault toleranten
dc.subjectAsynchronous consensusen
dc.titleContinuity: A deterministic Byzantine fault tolerant asynchronous consensus algorithmen
dc.title.serialComputer Networksen
dc.typeArticle - Refereeden
dc.type.dcmitypetexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S1389128621003935-main.pdf
Size:
717.95 KB
Format:
Adobe Portable Document Format
Description:
Published version