A review on the modeling and validation of biomass pyrolysis with a focus on product yield and composition

Abstract

Modeling is regarded as a suitable tool to improve biomass pyrolysis in terms of efficiency, product yield, and controllability. However, it is crucial to develop advanced models to estimate products' yield and composition as functions of biomass type/characteristics and process conditions. Despite many developed models, most of them suffer from insufficient validation due to the complexity in determining the chemical compounds and their quantity. To this end, the present paper reviewed the modeling and verification of products derived from biomass pyrolysis. Besides, the possible solutions towards more accurate modeling of biomass pyrolysis were discussed. First of all, the paper commenced reviewing current models and validating methods of biomass pyrolysis. Afterward, the influences of biomass characteristics, particle size, and heat transfer on biomass pyrolysis, particle motion, reaction kinetics, product prediction, experimental validation, current gas sensors, and potential applications were reviewed and discussed comprehensively. There are some difficulties with using current pyrolysis gas chromatography and mass spectrometry (Py-GC/MS) for modeling and validation purposes due to its bulkiness, fragility, slow detection, and high cost. On account of this, the applications of Py-GC/MS in industries are limited, particularly for online product yield and composition measurements. In the final stage, a recommendation was provided to utilize high-temperature sensors with high potentials to precisely validate the models for product yield and composition (especially CO, CO2, and H-2) during biomass pyrolysis. (C) 2021 BRTeam. All rights reserved.

Description

Keywords

Bioenergy, Lignocellulose, Biomass, Pyrolysis, Reaction kinetics, Sensor

Citation