Mathematical model of the cell division cycle of fission yeast
dc.contributor | Virginia Tech | en |
dc.contributor.author | Novak, Bela | en |
dc.contributor.author | Pataki, Z. | en |
dc.contributor.author | Ciliberto, Andrea | en |
dc.contributor.author | Tyson, John J. | en |
dc.contributor.department | Biological Sciences | en |
dc.date.accessed | 2014-03-20 | en |
dc.date.accessioned | 2014-04-09T18:12:22Z | en |
dc.date.available | 2014-04-09T18:12:22Z | en |
dc.date.issued | 2001-03 | en |
dc.description.abstract | Much is known about the genes and proteins controlling the cell cycle of fission yeast. Can these molecular components be spun together into a consistent mechanism that accounts for the observed behavior of growth and division in fission yeast cells? To answer this question, we propose a mechanism for the control system, convert it into a set of 14 differential and algebraic equations, study these equations by numerical simulation and bifurcation theory, and compare our results to the physiology of wild-type and mutant cells. In wild-type cells, progress through the cell cycle (G1 -->S --> G2 -->M) is related to cyclic progression around a hysteresis loop, driven by cell growth and chromosome alignment on the metaphase plate. However, the control system operates much differently in double-mutant cells, wee1(-) cdc25 Delta, which are defective in progress through the latter half of the cell cycle (G2 and M phases). These cells exhibit "quantized" cycles (interdivision times clustering around 90, 160, and 230 min). We show that these quantized cycles are associated with a supercritical Hopf bifurcation in the mechanism, when the wee1 and cdc25 genes are disabled. (C) 2001 American Institute of Physics. | en |
dc.description.sponsorship | Howard Hughes Medical Institute 75195-542501 | en |
dc.description.sponsorship | Hungarian Scientific Research Fund OTKA T 032015 | en |
dc.description.sponsorship | NSF DBI-9724085, MCB-0078920 | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Novak, B.; Pataki, Z.; Ciliberto, A.; Tyson, J. J., "mathematical model of the cell division cycle of fission yeast," Chaos 11, 277 (2001); http://dx.doi.org/10.1063/1.1345725 | en |
dc.identifier.doi | https://doi.org/10.1063/1.1345725 | en |
dc.identifier.issn | 1054-1500 | en |
dc.identifier.uri | http://hdl.handle.net/10919/47057 | en |
dc.identifier.url | http://scitation.aip.org/content/aip/journal/chaos/11/1/10.1063/1.1345725 | en |
dc.language.iso | en | en |
dc.publisher | AIP Publishing | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | anaphase-promoting complex | en |
dc.subject | p25(rum1) cdk inhibitor | en |
dc.subject | s-phase | en |
dc.subject | schizosaccharomyces-pombe | en |
dc.subject | molecular-model | en |
dc.subject | mitotic inducer | en |
dc.subject | g1 phase | en |
dc.subject | mitosis | en |
dc.subject | kinase | en |
dc.subject | cdc2 | en |
dc.title | Mathematical model of the cell division cycle of fission yeast | en |
dc.title.serial | Chaos | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 1.1345725.pdf
- Size:
- 337.24 KB
- Format:
- Adobe Portable Document Format
- Description:
- Main article