Design and Implementation of a Redress System for Roller Rig

Files

Report (1.24 MB)
Downloads: 129

TR Number

Date

2022-12-16

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

The Virginia Tech – Federal Railroad Administration Roller Rig at the Center for Vehicle Systems and Safety is a state of the art facility used to evaluate the wheel-rail contact mechanics and dynamics of railway vehicles and track. The Roller Rig consists mainly of an upper wheel and a lower roller that serve to simulate a railway vehicle and track respectively. Upon the completion of testing using the Roller Rig, a section of roughness is created on the surface of the wheel as a product of the two surfaces coming into contact with each other. In order to ensure data accuracy between different tests, the rough surface of the wheel must be smoothed down in between different tests and experiments performed on the Roller Rig. Initially, this process of smoothing the wheel was done completely manually, with the operator fixing a piece of sandpaper around a plastic tube and physically holding it contact while the wheel spins. Quite obviously, this manual process introduces issues of consistency and safety of the user, considering the Roller Rig is a device capable of outputting several hundred pounds of force. Therefore, in order to solve the problems that the manual process introduced, a project that converted the entirely manual process to that of a semi-automatic process of redressing. Therefore, in the Spring of 2021, the first version of the Roller Rig Redresser was constructed and reported on. However, due to the problems that the first version had, it was unable to be used for redressing on a reliable and consistent basis. Therefore, over the Fall 2022 semester, a second version of the Roller Rig Redresser was constructed and reported on, focusing on directly improving the shortcomings of the manual process and the aforementioned first redresser version.

Description

Keywords

Mechanical Design, Product Design, Fabrication Methods, Computer-Aided-Design, Rapid Prototyping

Citation