VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

Weka

dc.contributorVirginia Tech. Digital Library Research Laboratoryen
dc.contributorVirginia Tech. Department of Computer Scienceen
dc.contributor.authorPeddi, Bhanuen
dc.contributor.authorXiong, Huijunen
dc.contributor.authorElSherbiny, Nohaen
dc.contributor.departmentDigital Library Research Laboratoryen
dc.contributor.departmentComputer Scienceen
dc.contributor.editorFox, Edward A.en
dc.date.accessioned2015-05-22T14:18:55Zen
dc.date.available2015-05-22T14:18:55Zen
dc.date.issued2010-12-10en
dc.description.abstractThis module stresses the methods of text classification used in information retrieval. We focus on the usage of Weka, a data mining toolkit, in data processing with three classification algorithms: Naive Bayes [1], k Nearest Neighbor [2], and Support Vector Machine [3]) mentioned in the textbook [7].en
dc.description.notesCS 5604: Information Storage and Retrievalen
dc.format.extent7 pagesen
dc.format.mimetypeapplication/pdfen
dc.identifier.urihttp://hdl.handle.net/10919/52533en
dc.identifier.urlhttp://curric.dlib.vt.edu/modDev/package_modules/FinalModule-Team5-Weka.pdfen
dc.language.isoen_USen
dc.relation.ispartofseriesDigital Library Curriculum Projecten
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectComputer scienceen
dc.subjectDigital librariesen
dc.subjectWekaen
dc.subjectData miningen
dc.titleWekaen
dc.typeLearning objecten
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
FinalModule-Team5-Weka.pdf
Size:
295.09 KB
Format:
Adobe Portable Document Format