Weka

dc.contributorVirginia Tech. Digital Library Research Laboratoryen
dc.contributorVirginia Tech. Department of Computer Scienceen
dc.contributor.authorPeddi, Bhanuen
dc.contributor.authorXiong, Huijunen
dc.contributor.authorElSherbiny, Nohaen
dc.contributor.departmentDigital Library Research Laboratoryen
dc.contributor.departmentComputer Scienceen
dc.contributor.editorFox, Edward A.en
dc.date.accessioned2015-05-22T14:18:55Zen
dc.date.available2015-05-22T14:18:55Zen
dc.date.issued2010-12-10en
dc.description.abstractThis module stresses the methods of text classification used in information retrieval. We focus on the usage of Weka, a data mining toolkit, in data processing with three classification algorithms: Naive Bayes [1], k Nearest Neighbor [2], and Support Vector Machine [3]) mentioned in the textbook [7].en
dc.description.notesCS 5604: Information Storage and Retrievalen
dc.format.extent7 pagesen
dc.format.mimetypeapplication/pdfen
dc.identifier.urihttp://hdl.handle.net/10919/52533en
dc.identifier.urlhttp://curric.dlib.vt.edu/modDev/package_modules/FinalModule-Team5-Weka.pdfen
dc.language.isoen_USen
dc.relation.ispartofseriesDigital Library Curriculum Projecten
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectComputer scienceen
dc.subjectDigital librariesen
dc.subjectWekaen
dc.subjectData miningen
dc.titleWekaen
dc.typeLearning objecten
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
FinalModule-Team5-Weka.pdf
Size:
295.09 KB
Format:
Adobe Portable Document Format