Piezoelectric MEMS for energy harvesting
dc.contributor.author | Kim, Sang-Gook | en |
dc.contributor.author | Priya, Shashank | en |
dc.contributor.author | Kanno, Isaku | en |
dc.date.accessed | 2014-07-15 | en |
dc.date.accessioned | 2014-07-21T15:49:40Z | en |
dc.date.available | 2014-07-21T15:49:40Z | en |
dc.date.issued | 2012-11 | en |
dc.description.abstract | Piezoelectric microelectromechanical systems (MEMS) have been proven to be an attractive technology for harvesting small magnitudes of energy from ambient vibrations. This technology promises to eliminate the need for replacing chemical batteries or complex wiring in microsensors/microsystems, moving us closer toward battery-less autonomous sensors systems and networks. To achieve this goal, a fully assembled energy harvester the size of a US quarter dollar coin (diameter = 24.26 mm, thickness = 1.75 mm) should be able to robustly generate about 100 mu W of continuous power from ambient vibrations. In addition, the cost of the device should be sufficiently low for mass scale deployment. At the present time, most of the devices reported in the literature do not meet these requirements. This article reviews the current state of the art with respect to the key challenges such as high power density and wide bandwidth of operation. This article also describes improvements in piezoelectric materials and resonator structure design, which are believed to be the solutions to these challenges. Epitaxial growth and grain texturing of piezoelectric materials is being developed to achieve much higher energy conversion efficiency. For embedded medical systems, lead-free piezoelectric thin films are being developed, and MEMS processes for these new classes of materials are being investigated. Nonlinear resonating beams for wide bandwidth resonance are also being developed to enable more robust operation of energy harvesters. | en |
dc.description.sponsorship | Office of Basic Energy Sciences, Department of Energy (#DE-FG0207ER46480) and (DE-FG0209ER46577) | en |
dc.description.sponsorship | AFOSR Young Investigator Program | en |
dc.description.sponsorship | DARPA Grant (HR0011-06-1-0045) | en |
dc.description.sponsorship | MIT-Iberian Nanotechnology Laboratory Program | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Kim, S. G.; Priya, S.; Kanno, I., "Piezoelectric MEMS for energy harvesting," MRS Bulletin. 37(11), 1039-1050, 2012. DOI: 10.1557/mrs.2012.275 | en |
dc.identifier.doi | https://doi.org/10.1557/mrs.2012.275 | en |
dc.identifier.issn | 0883-7694 | en |
dc.identifier.uri | http://hdl.handle.net/10919/49645 | en |
dc.identifier.url | http://journals.cambridge.org/action/displayFulltext?type=1&fid=8739835&jid=MRS&volumeId=37&issueId=11&aid=8739833&bodyId=&membershipNumber=&societyETOCSession= | en |
dc.language.iso | en_US | en |
dc.publisher | Cambridge University Press | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | thin-films | en |
dc.subject | electrical-properties | en |
dc.subject | power-generation | en |
dc.subject | single-crystals | en |
dc.subject | fabrication | en |
dc.subject | design | en |
dc.subject | Performance | en |
dc.subject | deposition | en |
dc.subject | efficiency | en |
dc.subject | ceramics | en |
dc.subject | materials science, multidisciplinary | en |
dc.subject | physics, applied | en |
dc.title | Piezoelectric MEMS for energy harvesting | en |
dc.title.serial | MRS Bulletin | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- S0883769412002758a.pdf
- Size:
- 814.24 KB
- Format:
- Adobe Portable Document Format
- Description:
- Main article